Unravelling thermal-mechanical effects on microstructure evolution under superplastic forming conditions in a near alpha titanium alloy

[1]  S. Rahimi,et al.  Effect of texture and mechanical anisotropy on flow behaviour in Ti–6Al–4V alloy under superplastic forming conditions , 2021, Materials Science and Engineering: A.

[2]  R. Gauvin,et al.  Scanning Electron Microscopy versus Transmission Electron Microscopy for Material Characterization: A Comparative Study on High-Strength Steels , 2021, Scanning.

[3]  Jianguo Lin,et al.  The study of flow behavior and governing mechanisms of a titanium alloy during superplastic forming , 2020, Materials Science and Engineering: A.

[4]  Hongwei Wang,et al.  Dynamic recrystallization mechanism and improved mechanical properties of a near α high temperature titanium alloy processed by severe plastic deformation , 2020 .

[5]  Y. Lin,et al.  Hot tensile properties, microstructure evolution and fracture mechanisms of Ti-6Al-4V alloy with initial coarse equiaxed phases , 2020 .

[6]  Y. Lin,et al.  Hot Tensile Deformation Mechanism and Dynamic Softening Behavior of Ti–6Al–4V Alloy with Thick Lamellar Microstructures , 2020, Advanced Engineering Materials.

[7]  Yuanfei Han,et al.  Texture Evolution and Dynamic Recrystallization Behavior of Hybrid-Reinforced Titanium Matrix Composites: Enhanced Strength and Ductility , 2020, Metallurgical and Materials Transactions A.

[8]  Jianguo Lin,et al.  Constitutive modeling for the simulation of the superplastic forming of TA15 titanium alloy , 2019 .

[9]  Nallapaneni Manoj Kumar,et al.  High temperature superplasticity and its deformation mechanism of AA6063/SiC , 2019, Case Studies in Thermal Engineering.

[10]  V. Velay,et al.  Superplasticity of metastable ultrafine-grained Ti 6242S alloy: Mechanical flow behavior and microstructural evolution , 2019, Materials Science and Engineering: A.

[11]  P. Villechaise,et al.  In Situ EBSD Investigation of Deformation Processes and Strain Partitioning in Bi-Modal Ti-6Al-4V Using Lattice Rotations , 2019, Acta Materialia.

[12]  T. Langdon,et al.  Grain refinement and superplastic flow in a fully lamellar Ti-6Al-4V alloy processed by high-pressure torsion , 2018, Materials Science and Engineering: A.

[13]  Wenjing Yang,et al.  Ultra-grain refinement and enhanced low-temperature superplasticity in a friction stir-processed Ti-6Al-4V alloy , 2018, Materials Science and Engineering: A.

[14]  I. Balasundar,et al.  On the microstructure evolution in friction stir processed 2507 super duplex stainless steel and its effect on tensile behaviour at ambient and elevated temperatures , 2018 .

[15]  B. E. Dunlap,et al.  Comparison of dislocation characterization by electron channeling contrast imaging and cross-correlation electron backscattered diffraction. , 2018, Ultramicroscopy.

[16]  Ahmed O. Mosleh,et al.  Superplastic deformation behaviour and microstructure evolution of near-α Ti-Al-Mn alloy , 2017 .

[17]  Peijie Li,et al.  High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy , 2017 .

[18]  S. Semiatin,et al.  Microstructure Evolution and Mechanical Behavior of Ultrafine Ti-6Al-4V During Low Temperature Superplastic Deformation (Postprint) , 2016 .

[19]  G. Faraji,et al.  Hot tensile deformation and fracture behavior of ultrafine-grained AZ31 magnesium alloy processed by severe plastic deformation , 2016 .

[20]  Z. Yin,et al.  Superplastic behavior and microstructure evolution of a new Al-Mg-Sc-Zr alloy subjected to a simple thermomechanical processing , 2016 .

[21]  Roger C. Reed,et al.  On the mechanisms of superplasticity in Ti–6Al–4V , 2016 .

[22]  Jinrong Liu,et al.  Strain rate dependence of microstructural evolution in β titanium alloy during subtransus superplastic deformation , 2015 .

[23]  Weiweng Zhang,et al.  Superplastic behavior and microstructure evolution of a fine-grained Mg–Y–Nd alloy processed by submerged friction stir processing , 2015 .

[24]  R. Reed,et al.  Superplasticity in Ti–6Al–4V: Characterisation, modelling and applications , 2015 .

[25]  N. Guo,et al.  EBSD analysis of {10–12} twinning activity in Mg–3Al–1Zn alloy during compression , 2014 .

[26]  J. Sieniawski,et al.  Microstructural aspects of superplasticity in Ti–6Al–4V alloy , 2014 .

[27]  G. Ice,et al.  Strain and Dislocation Gradients from Diffraction:Spatially-Resolved Local Structure and Defects , 2014 .

[28]  M. Jahazi,et al.  Microstructure evolution at the onset of discontinuous dynamic recrystallization: A physics-based model of subgrain critical size , 2014 .

[29]  Weiweng Zhang,et al.  Microstructure evolution during high strain rate tensile deformation of a fine-grained AZ91 magnesium alloy , 2014 .

[30]  A. Wilkinson,et al.  Evolution of dislocation density distributions in copper during tensile deformation , 2013 .

[31]  Y. Takigawa,et al.  Accommodation mechanisms for grain boundary sliding as inferred from texture evolution during superplastic deformation , 2013 .

[32]  A. Wilkinson,et al.  Measurement of geometrically necessary dislocation density with high resolution electron backscatter diffraction: effects of detector binning and step size. , 2013, Ultramicroscopy.

[33]  C. Cepeda-Jiménez,et al.  Achieving microstructures prone to superplastic deformation in an Al–Zn–Mg–Cu alloy by equal channel angular pressing , 2013 .

[34]  R. Mishra,et al.  Superplastic behavior and microstructural stability of friction stir processed AZ91C alloy , 2013, Journal of Materials Science.

[35]  Y. Takigawa,et al.  Isotropic superplastic flow in textured magnesium alloy , 2012 .

[36]  R. Curtis,et al.  Optimum Specimen Geometry for Accurate Tensile Testing of Superplastic Metallic Materials , 2011 .

[37]  S. Pennycook Transmission Electron Microscopy: A Textbook for Materials Science, Second Edition . David B. Williams and C. Barry Carter. Springer, New York, 2009, 932 pages. ISBN 978-0-387-76500-6 (Hardcover), ISBN 978-0-387-76502-0 (Softcover) , 2010, Microscopy and Microanalysis.

[38]  M. J. Kim,et al.  Superplastic behavior of a fine-grained ZK60 magnesium alloy processed by high-ratio differential speed rolling , 2009 .

[39]  W. Kim,et al.  Microstructure and superplasticity of AZ31 sheet fabricated by differential speed rolling , 2009 .

[40]  C. Park,et al.  Enhanced superplasticity utilizing dynamic globularization of Ti–6Al–4V alloy , 2008 .

[41]  J. Monk,et al.  Strain-driven grain boundary motion in nanocrystalline materials , 2008 .

[42]  W. Pantleon Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction , 2008 .

[43]  M. Tan,et al.  High temperature deformation in Ti–5Al–2.5Sn alloy , 2007 .

[44]  M. Crimp Scanning electron microscopy imaging of dislocations in bulk materials, using electron channeling contrast , 2006, Microscopy research and technique.

[45]  Y. Liu,et al.  A set of unified constitutive equations for modelling microstructure evolution in hot deformation , 2003 .

[46]  J. C. Huang,et al.  Phase transformation in the β phase of super α2 Ti3Al base alloys during static annealing and superplastic deformation at 700–1000 °C , 2003 .

[47]  T. Nieh,et al.  Superplastic behavior of an Al/Mg alloy at elevated temperatures , 2003 .

[48]  Amit K. Ghosh,et al.  Microstructural evolution and superplastic deformation behavior of fine grain 5083Al , 1996 .