Catenanes: Fifty Years of Molecular Links

Half a century after Schill and Lüttringhaus carried out the first directed synthesis of a [2]catenane, a plethora of strategies now exist for the construction of molecular Hopf links (singly interlocked rings), the simplest type of catenane. The precision and effectiveness with which suitable templates and/or noncovalent interactions can arrange building blocks has also enabled the synthesis of intricate and often beautiful higher order interlocked systems, including Solomon links, Borromean rings, and a Star of David catenane. This Review outlines the diverse strategies that exist for synthesizing catenanes in the 21st century and examines their emerging applications and the challenges that still exist for the synthesis of more complex topologies.

[1]  B. Långström,et al.  Synthesis and Switchable Condensation Reaction of Bifunctional [2]Catenane. , 1998 .

[2]  C. Dietrich-Buchecker,et al.  Lithium templated synthesis of catenanes: efficient synthesis of doubly interlocked [2]-catenanes , 1999 .

[3]  Sérgio M. Santos,et al.  Anion induced and inhibited circumrotation of a [2]catenane. , 2008, Chemical communications.

[4]  H. Prinzbach,et al.  Cyclisationen Von Langkettigen Dithiolen. Versuche zur Darstellung sich umfassender Ringe mit Hilfe von Einschlußverbindungen , 1958 .

[5]  C. Batich,et al.  Mass spectral evidence for catenanes formed via a "Moebius-strip" approach , 1970 .

[6]  F. Seidel Über die Anhydro‐Verbindungen des o‐Amino‐benzaldehyds , 1926 .

[7]  Jeffrey S. Hannam,et al.  IRAS investigation of a catenane adsorption on Au(111) , 2005 .

[8]  C. Dietrich-Buchecker,et al.  Synthesis of multi-1,10-phenanthroline ligands with 1,3-phenylene linkers and their lithium complexes. , 2005, Chemistry.

[9]  Robert H. Grubbs,et al.  High‐Yield Synthesis of [2] Catenanes by Intramolecular Ring‐Closing Metathesis , 1997 .

[10]  Souheng Wu Chain structure and entanglement , 1989 .

[11]  Andrew J. Wilson,et al.  The mechanism of formation of amide-based interlocked compounds: prediction of a new rotaxane-forming motif. , 2004, Chemistry.

[12]  K. Ziegler,et al.  Über vielgliedrige Ringsysteme: VIII. Über eine neue Anwendung des Verdünnungsprinzips , 1937 .

[13]  R. Wolovsky Interlocked ring systems obtained by the metathesis reaction of cyclododecene. Mass spectral evidence , 1970 .

[14]  David A Leigh,et al.  A simple general ligand system for assembling octahedral metal-rotaxane complexes. , 2004, Angewandte Chemie.

[15]  Gottfried Schill,et al.  The Preparation of Catena Compounds by Directed Synthesis , 1964 .

[16]  R. Robson,et al.  Einander durchdringende Netze: geordnete, periodische Verschlingung , 1998 .

[17]  David A. Leigh,et al.  Glycylglycin‐Rotaxane — Wasserstoffbrückenvermittelte Selbstorganisation synthetischer Peptid‐Rotaxane , 1997 .

[18]  J. Sanders,et al.  Dynamic combinatorial synthesis of a catenane based on donor–acceptor interactions in water , 2009, Proceedings of the National Academy of Sciences.

[19]  P. Dawson,et al.  Design and Synthesis of a Protein Catenane This work was supported by The Skaggs Institute for Chemical Biology, The Sloan Foundation, and NIH-GM570132 (PED). We thank Dr. Songpong Deechongkit for assistance with the analytical ultracentrifuge and CD measurements. , 2001, Angewandte Chemie.

[20]  Christopher A. Hunter,et al.  Ein makrocyclischer Rezeptor für zwei Chinonmoleküle , 1992 .

[21]  Jean Weiss,et al.  Synthesis of biscopper(I) [3]-catenates: multiring interlocked coordinating systems. , 1985, Journal of the American Chemical Society.

[22]  Pierangelo Metrangolo,et al.  Halogenbrücken in der supramolekularen Chemie , 2008 .

[23]  R. Kuroda,et al.  Anion-directed formation and degradation of an interlocked metallohelicate. , 2012, Journal of the American Chemical Society.

[24]  M. Fujita,et al.  Self-Assembly of [2]Catenanes Containing Metals in Their Backbones , 1999 .

[25]  John E. Johnson,et al.  Topologically linked protein rings in the bacteriophage HK97 capsid. , 2000, Science.

[26]  Francesco Zerbetto,et al.  How do benzylic amide [2]catenane rings rotate? , 1999 .

[27]  David A. Leigh,et al.  Facile Synthesis and Solid-State Structure of a Benzylic Amide [2]Catenane† , 1995 .

[28]  C. Hunter,et al.  [2]Catenane or not [2]catenane? , 1995 .

[29]  D. Leigh,et al.  A Star of David catenane. , 2014, Nature chemistry.

[30]  John C. McMurtrie,et al.  Copper(I) Templated Synthesis of a 2,2´-Bipyridine Derived 2-Catenane: Synthetic, Modelling, and X-ray Studies , 2009 .

[31]  D. Leigh,et al.  Lanthanide template synthesis of a molecular trefoil knot. , 2014, Journal of the American Chemical Society.

[32]  P. Rudolf,et al.  Effect of potassium intercalation on the electronic and vibrational properties of benzylic amide [2]catenane films , 2002 .

[33]  Hamann,et al.  Synthesis of Copper(I) catenanes incorporating a disulfide bridge and their deposition on a gold surface , 2000, Organic letters.

[34]  J. F. Stoddart,et al.  Mechanically Interlocked Molecules Assembled by π–π Recognition , 2012 .

[35]  P. Beer,et al.  Sulfate anion templation of macrocycles, capsules, interpenetrated and interlocked structures. , 2009, Chemical Society reviews.

[36]  K. Müllen,et al.  Poly[2]-catenanes containing alternating topological and covalent bonds , 1996 .

[37]  C. Dietrich-Buchecker,et al.  7.7 – Supramolecular Systems: Templating , 2003 .

[38]  Francesco Zerbetto,et al.  Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. , 2003, Angewandte Chemie.

[39]  Jeremy K M Sanders,et al.  Lithium-templated synthesis of a donor-acceptor pseudorotaxane and catenane. , 2004, Angewandte Chemie.

[40]  M. Fujita,et al.  Spontaneous assembly of ten components into two interlocked, identical coordination cages , 1999, Nature.

[41]  T. Gunnlaugsson,et al.  Self-assembly formation of mechanically interlocked [2]- and [3]catenanes using lanthanide ion [Eu(III)] templation and ring closing metathesis reactions. , 2014, Chemical communications.

[42]  Frank Baumann,et al.  Changeover in a multimodal copper(ii) catenate as monitored by EPRspectroscopy , 1997 .

[43]  A. Sossinsky Knots: Mathematics with a Twist , 2002 .

[44]  Tanya K. Ronson,et al.  Stellated polyhedral assembly of a topologically complicated Pd4L4 ‘Solomon cube’ , 2009, Nature Chemistry.

[45]  E. Logemann,et al.  Aliphatic 1,2,3‐Triketones by Ozonolysis of Dialkyl‐1,4‐benzoquinones , 1972 .

[46]  C. Campbell,et al.  Tetrameric Cyclic Double Helicates as a Scaffold for a Molecular Solomon Link , 2013, Angewandte Chemie.

[47]  David A Leigh,et al.  Benzylic Imine Catenates: Readily Accessible Octahedral Analogues of the Sauvage Catenates. , 2001, Angewandte Chemie.

[48]  T. Swager,et al.  A Conducting Poly(cyclophane) and Its Poly([2]-catenane) , 2000 .

[49]  David A Leigh,et al.  Catalytic "click" rotaxanes: a substoichiometric metal-template pathway to mechanically interlocked architectures. , 2006, Journal of the American Chemical Society.

[50]  Kevin D. Haenni,et al.  The application of CuAAC 'click' chemistry to catenane and rotaxane synthesis. , 2010, Chemical Society reviews.

[51]  A. Kisanuki,et al.  Ring-Opening Polymerization of Aromatic 6-Membered Cyclic Disulfide and Characterization of the Polymer , 2009 .

[52]  Itamar Willner,et al.  A three-station DNA catenane rotary motor with controlled directionality. , 2013, Nano letters.

[53]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[54]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[55]  Toru Hoshi,et al.  Catenane gel: synthesis of high molecular weight poly[2]catenanes by Sonogashira coupling polymerization , 2012 .

[56]  A. Jonas,et al.  Mechanically linked poly(ethylene terephthalate) , 2004 .

[57]  P. Beer,et al.  Self-Assembly of a Mixed-Valence Copper(II)/Copper(III) Dithiocarbamate Catenane. , 2001, Angewandte Chemie.

[58]  D. Walba,et al.  The thyme polyethers: An approach to the synthesis of a molecular knotted ring , 1986 .

[59]  C. Dietrich-Buchecker,et al.  Shuttles and muscles: linear molecular machines based on transition metals. , 2001, Accounts of chemical research.

[60]  G. Clarkson,et al.  Sulfur-containing amide-based [2]rotaxanes and molecular shuttles , 2011 .

[61]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[62]  C H Heathcock,et al.  Nature knows best: an amazing reaction cascade is uncovered by design and discovery. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[63]  J. F. Stoddart,et al.  Zweistufige Selbstassoziation von [4]‐ und [5]Catenanen , 1994 .

[64]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.

[65]  Ronald C. Read,et al.  The knot book: An elementary introduction to the mathematical theory of knots , 1997, Complex..

[66]  P. Beer,et al.  Progress in the synthesis and exploitation of catenanes since the Millennium. , 2014, Chemical Society reviews.

[67]  David J. Williams,et al.  Selbstassoziierende [3]‐Catenane , 1991 .

[68]  C. Che,et al.  A chiral [2]catenane precursor of the antiarthritic gold(I) drug auranofin. , 2006, Angewandte Chemie.

[69]  H. Anderson,et al.  Template-directed synthesis of π-conjugated porphyrin [2]rotaxanes and a [4]catenane based on a six-porphyrin nanoring , 2011 .

[70]  K. Mislow,et al.  On Borromean links , 1994 .

[71]  Jean-Pierre Sauvage,et al.  Molecular structure of a catenand and its copper(I) catenate: complete rearrangement of the interlocked macrocyclic ligands by complexation , 1985 .

[72]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .

[73]  Christopher L. Brown,et al.  Self-Assembling [3]Catenanes† , 1991 .

[74]  Duilio Cascio,et al.  Discovery of a thermophilic protein complex stabilized by topologically interlinked chains. , 2007, Journal of molecular biology.

[75]  Paulo J. Costa,et al.  A halogen-bonding catenane for anion recognition and sensing. , 2012, Angewandte Chemie.

[76]  P. Beer,et al.  Anion templated assembly of mechanically interlocked structures. , 2007, Chemical Society reviews.

[77]  Hans Fritz,et al.  Synthese, Isolierung und Identifizierung translationsisomerer [3]Catenane , 1981 .

[78]  H. Schneider,et al.  Neues zum hydrophoben Effekt – Studien mit supramolekularen Komplexen zeigen hochenergetisches Wasser als nichtkovalente Bindungstriebkraft , 2014 .

[79]  Wallace W. H. Wong,et al.  Heteropolymetallic copper(II)-gold(III) dithiocarbamate [2]catenanes via magic ring synthesis. , 2005, Chemical communications.

[80]  Charles J. Pedersen,et al.  Die Entdeckung der Kronenether (Nobel‐Vortrag) , 1988 .

[81]  J. F. Stoddart,et al.  A catenated strut in a catenated metal-organic framework. , 2010, Angewandte Chemie.

[82]  P. Youle,et al.  Cyclic Polyamides from Nylon 6 and 6.6 Polymers: Constitution of the Cyclic Polyamides isolated from Nylon 66 Polymer , 1956, Nature.

[83]  J. Sanders,et al.  Templated dynamic synthesis of a [3]catenane. , 2012, Angewandte Chemie.

[84]  N. Murata,et al.  Synthesis and Characterization of Poly(1,2-dithiane) , 2004 .

[85]  Euan R. Kay,et al.  Synthetische molekulare Motoren und mechanische Maschinen , 2007 .

[86]  P. Derst,et al.  Über den thermischen Abbau des polymeren Phosphornitrilchlorids , 1959 .

[87]  C. Tanford Macromolecules , 1994, Nature.

[88]  Yue-jian Lin,et al.  Cp*Rh-based heterometallic metallarectangles: size-dependent Borromean link structures and catalytic acyl transfer. , 2013, Journal of the American Chemical Society.

[89]  Jakob Hey,et al.  Selbstassemblierung und schrittweise Oxidation von Phenothiazin-basierten, interpenetrierten Koordinationskäfigen† , 2013 .

[90]  Hsian-Rong Tseng,et al.  Chemical synthesis gets a fillip from molecular recognition and self-assembly processes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[91]  G. Clarkson,et al.  A high resolution electron energy loss spectroscopy study of the adsorption of benzylic amide macrocycle on Au(111) , 2001 .

[92]  H. Mark,et al.  Zur Struktur der Polysiloxene. I , 1953 .

[93]  Alicia M Beatty,et al.  Templated conversion of a crown ether-containing macrobicycle into [2]rotaxanes. , 2002, The Journal of organic chemistry.

[94]  François Debaene,et al.  Simultaneous self-assembly of a [2]catenane, a trefoil knot, and a Solomon link from a simple pair of ligands. , 2013, Angewandte Chemie.

[95]  Yi‐Hung Liu,et al.  Synthesis of a [2]catenane from the sodium ion templated orthogonal arrangement of two diethylene glycol chains. , 2013, Angewandte Chemie.

[96]  Jean-Pierre Sauvage,et al.  Une nouvelle famille de molecules : les metallo-catenanes , 1983 .

[97]  J. Sauvage,et al.  A [2]catenane constructed around a rhodium(III) center used as a template. , 2003, Inorganic chemistry.

[98]  Fritz Vögtle,et al.  Macrotricyclic host molecules with basket shaped cavities , 1988 .

[99]  J. C. Barnes,et al.  Controlling switching in bistable [2]catenanes by combining donor-acceptor and radical-radical interactions. , 2012, Journal of the American Chemical Society.

[100]  C. Zuercher,et al.  [3]-Catenane durch gezielte Synthese , 1977 .

[101]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[102]  E. Coronado,et al.  Catenanes and threaded systems: from solution to surfaces. , 2009, Chemical Society reviews.

[103]  J. Schmedt auf der Günne,et al.  Formation of a strandlike polycatenane of icosahedral cages for reversible one-dimensional encapsulation of guests. , 2011, Journal of the American Chemical Society.

[104]  P. J. Lusby,et al.  Getting harder: cobalt(III)-template synthesis of catenanes and rotaxanes. , 2009, Journal of the American Chemical Society.

[105]  C. Dietrich-Buchecker,et al.  Synthesis of a doubly interlocked [2]-catenane. , 1994, Journal of the American Chemical Society.

[106]  R. Advíncula,et al.  Cyclic polymers and catenanes by atom transfer radical polymerization (ATRP) , 2014 .

[107]  J. Sanders,et al.  Amplifying different [2]catenanes in an aqueous donor-acceptor dynamic combinatorial library. , 2009, Journal of the American Chemical Society.

[108]  Kimoon Kim,et al.  Synthesis of a Five-Membered Molecular Necklace: A 2+2 Approach. , 1999, Angewandte Chemie.

[109]  Samuel P. Black,et al.  Generation of a Dynamic System of Three‐Dimensional Tetrahedral Polycatenanes , 2013, Angewandte Chemie.

[110]  F. Asturias,et al.  Tangled up in knots: structures of inactivated forms of E. coli class Ia ribonucleotide reductase. , 2012, Structure.

[111]  P. Dawson,et al.  Design and Synthesis of a Protein Catenane , 2001 .

[112]  G. Schill,et al.  Gezielte Synthese von Catena‐Verbindungen, XI1) Bis‐diansa‐Verbindungen des 5‐Amino‐benzodioxols als Modelle für die Synthese von [3]‐Catenanen , 1970 .

[113]  P. Ashton,et al.  Molecular Necklace: Quantitative Self-Assembly of a Cyclic Oligorotaxane from Nine Molecules , 1998 .

[114]  David A. Leigh,et al.  Organic “Magic Rings”: The Hydrogen Bond-Directed Assembly of Catenanes under Thermodynamic Control , 1999 .

[115]  D. Walba,et al.  The thyme polyethers , 1986 .

[116]  J. Sauvage,et al.  Zinc(II)-templated synthesis of a [2]-catenane consisting of a 2,2',6',2' '-terpyridine-incorporating cycle and a 1,10-phenanthroline-containing ring. , 2003, Inorganic chemistry.

[117]  A molecular solomon link. , 2007, Angewandte Chemie.

[118]  A. Cooper,et al.  Triply interlocked covalent organic cages. , 2010, Nature chemistry.

[119]  Jean-Pierre Sauvage,et al.  Transition metal-complexed catenanes and rotaxanes in motion: Towards molecular machines , 2005 .

[120]  J. Sauvage,et al.  Copper-complexed catenanes and rotaxanes in motion: 15 years of molecular machines. , 2010, Dalton transactions.

[121]  Francesco Zerbetto,et al.  Growth and characterization of benzylic amide (2)catenane thin films , 1998 .

[122]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[123]  Gareth W. V. Cave,et al.  Molecular Borromean Rings , 2004, Science.

[124]  David J. Williams,et al.  Ein chemisch und elektrochemisch schaltbares [2]Catenan mit Tetrathiafulvalen‐Einheit , 1998 .

[125]  P. J. Lusby,et al.  Gold(I)-template catenane and rotaxane synthesis. , 2008, Angewandte Chemie.

[126]  R. Kuroda,et al.  A quadruply stranded metallohelicate and its spontaneous dimerization into an interlocked metallohelicate. , 2008, Angewandte Chemie.

[127]  Jean-Pierre Sauvage,et al.  Transition metal complexes as molecular machine prototypes. , 2007, Chemical Society reviews.

[128]  Paulo J. Costa,et al.  A Catenane Assembled through a Single Charge-Assisted Halogen Bond , 2013, Angewandte Chemie.

[129]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[130]  N. Seeman,et al.  Construction of a DNA-Truncated Octahedron , 1994 .

[131]  C. Hunter Synthesis and structure elucidation of a new [2]-catenane , 1992 .

[132]  David A Leigh,et al.  Half-rotation in a [2]catenane via interconvertible Pd(II) coordination modes. , 2005, Chemical communications.

[133]  Christopher L. Brown,et al.  The Self-Assembly of a [2]Catenane , 1991 .

[134]  G. Bernardinelli,et al.  Helicate, macrocycle, or catenate: Dynamic topological control over subcomponent self-assembly. , 2006, Chemistry.

[135]  A. Slawin,et al.  Phosphorus-based functional groups as hydrogen bonding templates for rotaxane formation. , 2011, Journal of the American Chemical Society.

[136]  J. Champoux DNA topoisomerases: structure, function, and mechanism. , 2001, Annual review of biochemistry.

[137]  Chuan‐Ming Jin,et al.  A new infinite inorganic [n]catenane from silver and bis(2-methylimidazolyl)methane ligand. , 2006, Chemical communications.

[138]  William R. Taylor,et al.  Protein knots and fold complexity: Some new twists , 2007, Comput. Biol. Chem..

[139]  A. Slawin,et al.  Porous organic cages. , 2009, Nature materials.

[140]  Sheng-Li Huang,et al.  Self-assembly of molecular Borromean rings from bimetallic coordination rectangles. , 2014, Angewandte Chemie.

[141]  Kristopher J Harris,et al.  Metal-organic frameworks with dynamic interlocked components. , 2012, Nature chemistry.

[142]  F. Vögtle,et al.  Einstufige Synthese eines vierfach funktionalisierten Catenans , 1992 .

[143]  D. Chand,et al.  DOSY study on dynamic catenation: self-assembly of a [3]catenane as a meta-stable compound from twelve simple components. , 2001, Chemistry.

[144]  G. Bricogne,et al.  Self-assembly of a giant molecular Solomon link from 30 subcomponents. , 2014, Angewandte Chemie.

[145]  Anthony C Legon,et al.  The halogen bond: an interim perspective. , 2010, Physical chemistry chemical physics : PCCP.

[146]  J. Vinograd,et al.  Catenated Circular DNA Molecules in HeLa Cell Mitochondria , 1967, Nature.

[147]  J. Sauvage,et al.  Solution study and molecular structure of a [3]-catenand. Intramolecular interaction between the two peripheral rings , 1988 .

[148]  G. Schill,et al.  Aliphatische 1,2,3‐Triketone durch Ozonolyse von Dialkyl‐1,4‐benzochinonen , 1972 .

[149]  V. Prelog,et al.  Zur Kenntnis des Kohlenstoffringes. Ein Herstellungsverfahren für vielgliedrige Cyclanone , 1947 .

[150]  David A Leigh,et al.  Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. , 2009, Chemical Society reviews.

[151]  J. F. Stoddart,et al.  Three-dimensional architectures incorporating stereoregular donor-acceptor stacks. , 2013, Chemistry.

[152]  A. Godt Non‐Rusty [2]Catenanes with Huge Rings and Their Polymers , 2004 .

[153]  David J. Williams,et al.  Ein Gold(I)-[2]Catenan† , 1995 .

[154]  M. Stoll,et al.  Synthèse de produits macrocycliques à odeur musquée. Sur les acyloïnes cycliques , 1947 .

[155]  J. F. Stoddart,et al.  Oligocatenanes Made to Order1 , 1998 .

[156]  E. Yashima,et al.  Amidinium carboxylate salt bridges as a recognition motif for mechanically interlocked molecules: synthesis of an optically active [2]catenane and control of its structure. , 2010, Angewandte Chemie.

[157]  J. F. Stoddart,et al.  Main‐Chain and Pendant Poly([2]catenane)s Incorporating Complementary π‐Electron‐Rich and ‐Deficient Components , 1998 .

[158]  Alexandra M. Z. Slawin,et al.  Glycylglycine Rotaxanes—The Hydrogen Bond Directed Assembly of Synthetic Peptide Rotaxanes , 1997 .

[159]  Charles Tanford,et al.  The hydrophobic effect , 1980 .

[160]  M. Fujita,et al.  Quantitative self-assembly of a [2]catenane from two preformed molecular rings , 1994, Nature.

[161]  David A Leigh,et al.  Selecting topology and connectivity through metal-directed macrocyclization reactions: a square planar palladium [2]catenate and two noninterlocked isomers. , 2005, Journal of the American Chemical Society.

[162]  G. Schill,et al.  Mechanisch verknüpfte Moleküle Catenane und Rotaxane , 2004, Naturwissenschaften.

[163]  E. Wasserman,et al.  THE PREPARATION OF INTERLOCKING RINGS: A CATENANE1 , 1960 .

[164]  U. Starke,et al.  Toward mechanical switching of surface-adsorbed [2]catenane by in situ copper complexation. , 2007, Journal of the American Chemical Society.

[165]  Jean-Pierre Sauvage,et al.  Rotaxanes as new architectures for photoinduced electron transfer and molecular motions , 1999 .

[166]  J. C. Barnes,et al.  A Radically Configurable Six-State Compound , 2013, Science.

[167]  Stephen J. Lee,et al.  Synthesis of interlocked 56-membered rings by dynamic self-templating. , 2009, Angewandte Chemie.

[168]  M. Ward,et al.  A bis(terpyridine)ruthenium(II) catenate , 1991 .

[169]  David J. Williams,et al.  Selbstorganisation von Catenanen mit Cyclodextrineinheiten , 1993 .

[170]  S. J. Loeb,et al.  Metal-organic rotaxane frameworks; MORFs. , 2005, Chemical communications.

[171]  T Koller,et al.  Duplex DNA knots produced by Escherichia coli topoisomerase I. Structure and requirements for formation. , 1985, The Journal of biological chemistry.

[172]  S. Kawauchi,et al.  High-yield diastereoselective synthesis of planar chiral [2]- and [3]rotaxanes constructed from per-ethylated pillar[5]arene and pyridinium derivatives. , 2012, Chemistry.

[173]  Jonathan L. Sessler,et al.  Bipyrrole-Based [2]Catenane: A New Type of Anion Receptor , 1998 .

[174]  K. Ziegler,et al.  Über vielgliedrige Ringsysteme: III. Meta- u. para-Ringschlüsse in der Benzolreihe , 1934 .

[175]  G. Schill Catenanes, Rotaxanes, and Knots , 2013 .

[176]  Itamar Willner,et al.  Autonomous control of interfacial electron transfer and the activation of DNA machines by an oscillatory pH system. , 2013, Nano letters.

[177]  P. Beer,et al.  Anion templated double cyclization assembly of a chloride selective [2]catenane. , 2006, Chemical communications.

[178]  J. Sanders,et al.  Homochiral and meso figure eight knots and a Solomon link. , 2014, Journal of the American Chemical Society.

[179]  D. A. Clayton,et al.  Circular Dimer and Catenate Forms of Mitochondrial DNA in Human Leukaemic Leucocytes , 1967, Nature.

[180]  J. Lehn,et al.  Self-Assembly of Tetra- and Hexanuclear Circular Helicates , 1997 .

[181]  J. Sauvage,et al.  A [2]catenane constructed around a Ru(diimine)(3)(2+) complex used as a template. , 2003, Journal of the American Chemical Society.

[182]  Kimoon Kim,et al.  Designed self-assembly of molecular necklaces. , 2002, Journal of the American Chemical Society.

[183]  Maria Consuelo Jimenez-Molero,et al.  Rotaxanes and catenanes as prototypes of molecular machines and motors , 2004 .

[184]  C. Campbell,et al.  Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. , 2011, Angewandte Chemie.

[185]  Bernhard Mohr,et al.  Effiziente Synthese von [2]‐Catenanen durch intramolekulare Olefinmetathese , 1997 .

[186]  J. Fraser Stoddart,et al.  Metal nanoparticles functionalized with molecular and supramolecular switches. , 2009, Journal of the American Chemical Society.

[187]  Pierangelo Metrangolo,et al.  Halogen bonding in supramolecular chemistry. , 2008, Angewandte Chemie.

[188]  Jean-Pierre Sauvage,et al.  Transition‐Metal‐Complexed Molecular Machine Prototypes , 2006 .

[189]  T. Posner Ueber die Condensation von Nitromethan mit substituirten aromatischen Aldehyden , 1898 .

[190]  Francesco Zerbetto,et al.  Photoemission study of pristine and potassium intercalated benzylic amide [2]catenane films , 2001 .

[191]  Vincenzo Balzani,et al.  A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.

[192]  G. Gokel,et al.  The first surface-attached catenane: self-assembly of a two-component monolayer , 1993 .

[193]  K. Fujiwara,et al.  Entropy- and hydrolytic-driven positional switching of macrocycle between imine- and hydrogen-bonding stations in rotaxane-based molecular shuttles. , 2008, Journal of the American Chemical Society.

[194]  Jean-Pierre Sauvage,et al.  Redox Control of the Ring-Gliding Motion in a Cu-Complexed Catenane: A Process Involving Three Distinct Geometries , 1996 .

[195]  J Fraser Stoddart,et al.  Template-directed synthesis employing reversible imine bond formation. , 2007, Chemical Society reviews.

[196]  David J. Williams,et al.  A Gold(I) [2]Catene† , 1995 .

[197]  Paulo J. Costa,et al.  Sulfate anion templated synthesis of a triply interlocked capsule. , 2009, Chemical communications.

[198]  S. Yano,et al.  Synthesis of poly[2]catenane having rigid linkage by 1,3-dipolar cycloaddition of diazido[2]catenane with 4,4′-diethynylbiphenyl , 2011 .

[199]  Fabio Arico,et al.  Synthesis of a [2]catenane around a Ru(diimine)3(2+) scaffold by ring-closing metathesis of olefins. , 2003, Organic letters.

[200]  Kyu‐Sung Jeong,et al.  A catenated anion receptor based on indolocarbazole , 2010 .

[201]  J. F. Stoddart,et al.  Nanoscale Borromean links for real. , 2005, Chemical communications.

[202]  J. F. Stoddart,et al.  A metal-organic framework replete with ordered donor-acceptor catenanes. , 2010, Chemical communications.

[203]  David A. Leigh,et al.  Self-assembly of mechanically interlocked and threaded rings: a HREELS and XPS study of thiol-functionalised catenane and rotaxane molecules on Au(111) , 2000 .

[204]  D. Leigh,et al.  Amide-based molecular shuttles (2001-2006) , 2007 .

[205]  David A. Leigh,et al.  Einfache Synthese eines Benzylamid-[2]Catenans und seine Festkörperstruktur† , 1995 .

[206]  Jason J. Davis,et al.  Solution and surface-confined chloride anion templated redox-active ferrocene catenanes , 2012 .

[207]  Ana M. Belenguer,et al.  Amplification of Acetylcholine-Binding Catenanes from Dynamic Combinatorial Libraries , 2005, Science.

[208]  Kimoon Kim Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. , 2002, Chemical Society reviews.

[209]  C. Dietrich-Buchecker,et al.  Transition metals as assembling and templating species: From catenanes and knots to strings threaded through molecular rings , 1994 .

[210]  Itamar Willner,et al.  Programmed dynamic topologies in DNA catenanes. , 2012, Angewandte Chemie.

[211]  P. Beer,et al.  Anion-templated assembly of a [2]catenane. , 2004, Journal of the American Chemical Society.

[212]  S. J. Loeb,et al.  Rotaxanes as ligands: from molecules to materials. , 2007, Chemical Society reviews.

[213]  Anna L. Mallam,et al.  How does a knotted protein fold? , 2009, The FEBS journal.

[214]  W. Vetter,et al.  Synthesis, Isolation, and Identification of Translationally Isomeric [3]Catenanes , 1981 .

[215]  P. Gaviña,et al.  Synthetic Strategies for the Construction of Threaded and Interlocked Molecules , 2010 .

[216]  Leyong Wang,et al.  Multiple Catenanes Derived from Calix[4]arenes , 2004, Science.

[217]  J. F. Stoddart,et al.  Templated Synthesis of Interlocked Molecules , 2005 .

[218]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[219]  Vincenzo Balzani,et al.  Electrochemically and Photochemically Driven Ring Motions in a Disymmetrical Copper [2]-Catenate. , 1997, Journal of the American Chemical Society.

[220]  David J. Williams,et al.  The Self‐Assembly of Catenated Cyclodextrins , 1993 .

[221]  Fritz Vögtle,et al.  High‐Yield Synthesis of Ester, Carbonate, and Acetal Rotaxanes by Anion Template Assistance and their Hydrolytic Dethreading , 1999 .

[222]  A. L. Hubbard,et al.  Host-guest interactions template: the synthesis of a [3]catenane. , 2004, Chemical communications.

[223]  Gareth W. V. Cave,et al.  The dynamic chemistry of molecular borromean rings and Solomon knots. , 2010, Chemistry.

[224]  Tanya K. Ronson,et al.  Two-stage directed self-assembly of a cyclic [3]catenane. , 2015, Nature chemistry.

[225]  A. Slawin,et al.  Mechanically linked polycarbonate. , 2003, Journal of the American Chemical Society.

[226]  Jean-Pierre Sauvage,et al.  Templated synthesis of interlocked macrocyclic ligands, the catenands. Preparation and characterization of the prototypical bis-30 membered ring system , 1990 .

[227]  N. Seeman,et al.  Assembly of Borromean rings from DNA , 1997, Nature.

[228]  C. Robinson,et al.  Evidence that the catenane form of CS2 hydrolase is not an artefact. , 2013, Chemical communications.

[229]  Jean-Pierre Sauvage,et al.  Templated synthesis of interlocked macrocyclic ligands: the catenands , 1984 .

[230]  Canzhong Lu,et al.  Assembly of a metal-organic framework by sextuple intercatenation of discrete adamantane-like cages. , 2010, Nature chemistry.

[231]  David M. Walba,et al.  Total synthesis of the first molecular Moebius strip , 1982 .

[232]  M. Stoll,et al.  Synthèse de produits macrocycliques à odeur musquée. (2ème communication. Sur une amélioration de la préparation des acyloïnes cycliques , 1947 .

[233]  V. Rotello,et al.  Synthesis of a polypseudorotaxane, polyrotaxane, and polycatenane using 'click' chemistry , 2009 .

[234]  D. H. Busch,et al.  Template routes to interlocked molecular structures and orderly molecular entanglements , 2000 .

[235]  F. Vögtle,et al.  How Selective Threading of Amides through Macrocylic Lactam Wheels Leads to Rotaxane Synthesis , 1999 .

[236]  L. Ruzicka,et al.  Zur Kenntnis des Kohlenstoffringes II. Synthese der carbocyclischen Ketone vom Zehner- bis zum Achtzehnerring , 1926 .

[237]  P. Barran,et al.  Active-metal template synthesis of a molecular trefoil knot. , 2011, Angewandte Chemie.

[238]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[239]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[240]  David J. Williams,et al.  A [2] Catenane Made to Order , 1989 .

[241]  N. Isaacs,et al.  Bovine mitochondrial peroxiredoxin III forms a two-ring catenane. , 2005, Structure.

[242]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[243]  Gottfried Schill,et al.  Gezielte Synthese von Catena‐Verbindungen [1] , 1964 .

[244]  J. Cotter,et al.  Stable Free Radicals. II. The Reduction of 1-Methyl-4-cyanopyridinium Ion to Methylviologen Cation Radical , 1964 .

[245]  T. Ogoshi,et al.  Diastereoselective synthesis of a [2]catenane from a pillar[5]arene and a pyridinium derivative. , 2014, Chemical communications.

[246]  David A. Leigh,et al.  The Synthesis and Solubilization of Amide Macrocycles via Rotaxane Formation , 1996 .

[247]  Davide M. Proserpio,et al.  POLYCATENATION, POLYTHREADING AND POLYKNOTTING IN COORDINATION NETWORK CHEMISTRY , 2003 .

[248]  Synlett , 2022 .

[249]  P. Beer,et al.  A [2]catenane displaying pirouetting motion triggered by debenzylation and locked by chloride anion recognition. , 2011, Chemistry.

[250]  W. Köhler,et al.  Poly[2]catenanes and cyclic oligo[2] catenanes containing alternating topological and covalent bonds: Synthesis and characterization , 1999 .

[251]  Guido H. Clever,et al.  Stufenweise halogenidgesteuerte Doppel‐ und Dreifach‐Catenierung von selbstorganisierten Koordinationskäfigen , 2015 .

[252]  Jean-Pierre Sauvage,et al.  Electrochemically Triggered Swinging of a [2]-Catenate. , 1994, Journal of the American Chemical Society.

[253]  P. McGonigal,et al.  Active metal template synthesis of [2]catenanes. , 2009, Journal of the American Chemical Society.

[254]  S. Fukuzumi,et al.  Assembly and stepwise oxidation of interpenetrated coordination cages based on phenothiazine. , 2013, Angewandte Chemie.

[255]  Jean-Pierre Sauvage,et al.  Light-driven machine prototypes based on dissociative excited states: photoinduced decoordination and thermal recoordination of a ring in a ruthenium(II)-containing [2]catenane. , 2004, Angewandte Chemie.

[256]  J. F. Stoddart,et al.  The two-step self-assembly of [4]- and [5]catenanes , 1994 .

[257]  P. Rizkallah,et al.  Self-assembly of a 3-D triply interlocked chiral [2]catenane. , 2008, Journal of the American Chemical Society.

[258]  Iris M. Oppel,et al.  A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. , 2014, Angewandte Chemie.

[259]  N. Seeman Nucleic Acid Nanostructures and Topology. , 1998, Angewandte Chemie.

[260]  K. Ziegler,et al.  Über vielgliedrige Ringsysteme. I. Die präparativ ergiebige Synthese der Polymethylenketone mit mehr als 6 Ringgliedern , 1933 .

[261]  Nadrian C. Seeman Nanostrukturen und Topologien von Nucleinsäuren , 1998 .

[262]  P. Beer,et al.  Interlocked host molecules for anion recognition and sensing , 2013 .

[263]  K. Ziegler,et al.  Über vielgliedrige Ringsysteme: IV. Die Synthese des rac. Muskons , 1934 .

[264]  Charles J. Pedersen,et al.  The Discovery of Crown Ethers (Noble Lecture) , 1988 .

[265]  J. Vittal,et al.  Molecular Topology: Easy Self-Assembly of an Organometallic Doubly Braided [2]Catenane. , 2000, Angewandte Chemie.

[266]  C. Plummer,et al.  Deformation and entanglement in semicrystalline polymers , 1994 .

[267]  F. Vögtle,et al.  One‐Step Synthesis of a Fourfold Functionalized Catenane , 1992 .

[268]  Fritz Vögtle,et al.  Catenanes and rotaxanes of the amide type , 1996 .

[269]  Jean-Pierre Sauvage,et al.  High-yield synthesis of multiring copper(I) catenates by acetylenic oxidative coupling , 1986 .

[270]  Kimoon Kim,et al.  Synthese einer fünfgliedrigen molekularen „Perlenkette”︁ nach einem 2 + 2‐Konzept , 1999 .

[271]  C. Hunter,et al.  A Binary Quinone Receptor , 1992 .

[272]  Xie Hong-kun,et al.  Nature of Science , 2002 .

[273]  J. W. Alexander,et al.  On Types of Knotted Curves , 1926 .

[274]  J. Shaffer Effects of chain topology on polymer dynamics: Bulk melts , 1994 .

[275]  Christoph A Schalley,et al.  Novel template effect for the preparation of [2]rotaxanes with functionalised centre pieces. , 2002, Chemical communications.

[276]  David J. Williams,et al.  Ein [2]‐Catenan auf Bestellung , 1989 .

[277]  J. F. Stoddart,et al.  Synthesizing interlocked molecules dynamically. , 2009, Chemical record.

[278]  Kevin D. Haenni,et al.  [2]Rotaxanes through palladium active-template oxidative heck cross-couplings. , 2007, Journal of the American Chemical Society.

[279]  J. Siegel,et al.  Synthesis of achiral and racemic catenanes based on terpyridine and a directionalized terpyridine mimic, pyridyl-phenanthroline. , 2005, Organic & biomolecular chemistry.

[280]  J. Davies,et al.  Neutral [2]catenanes from oxidative coupling of π-stackedcomponents , 1997 .

[281]  C. Dietrich-Buchecker,et al.  Interlacing molecular threads on transition metals , 1990 .

[282]  William R. Taylor,et al.  A deeply knotted protein structure and how it might fold , 2000, Nature.

[283]  Hans-Jörg Schneider,et al.  The hydrophobic effect revisited--studies with supramolecular complexes imply high-energy water as a noncovalent driving force. , 2014, Angewandte Chemie.

[284]  Daqiang Yuan,et al.  A controllable and dynamic assembly system based on discrete metallocages , 2014 .

[285]  C. Dietrich-Buchecker,et al.  Multiring interlocked systems: structure elucidation by electrospray mass spectrometry , 1991 .

[286]  Rongmei Zhu,et al.  Stepwise halide-triggered double and triple catenation of self-assembled coordination cages. , 2015, Angewandte Chemie.

[287]  J Fraser Stoddart,et al.  A Switchable Hybrid [2]-Catenane Based on Transition Metal Complexation and π-Electron Donor-Acceptor Interactions. , 1996, Journal of the American Chemical Society.

[288]  Kevin D. Haenni,et al.  Catalytic "active-metal" template synthesis of [2]rotaxanes, [3]rotaxanes, and molecular shuttles, and some observations on the mechanism of the cu(i)-catalyzed azide-alkyne 1,3-cycloaddition. , 2007, Journal of the American Chemical Society.

[289]  D. Chandler Interfaces and the driving force of hydrophobic assembly , 2005, Nature.

[290]  L. Ruzicka,et al.  Zur Kenntnis des Kohlenstoffringes XXVII. Über den 26‐, 28‐, 30‐, 32‐, und 34‐gliedrigen Kohlenstoffring und über physikalische Eigenschaften bei vielgliedrigen Kohlenstoffringen , 1934 .

[291]  Laurence Raehm,et al.  Disulfide- and thiol-incorporating copper catenanes: synthesis, deposition onto gold, and surface studies. , 2002, Chemistry.

[292]  S. Saito,et al.  Synthesis of [2]catenanes by oxidative intramolecular diyne coupling mediated by macrocyclic copper(I) complexes. , 2009, Angewandte Chemie.

[293]  N. V. Gulick Theoretical aspects of the linked ring problem , 1993 .

[294]  Jean-Pierre Sauvage,et al.  Interlacing molecular threads on transition metals: catenands, catenates, and knots , 1990 .

[295]  Byung Il Lee,et al.  Ring‐shaped architecture of RecR: implications for its role in homologous recombinational DNA repair , 2004, The EMBO journal.

[296]  P. Beer,et al.  Rotaxane and catenane host structures for sensing charged guest species. , 2014, Accounts of chemical research.

[297]  David A. Leigh,et al.  Strategien und Taktiken für die metallgesteuerte Synthese von Rotaxanen, Knoten, Catenanen und Verschlingungen höherer Ordnung , 2011 .