Dielectric Function of Nitride Semiconductors: Recent Experimental Results

A review on the experimental determination of the dielectric function for hexagonal nitride semiconductors is presented. The peculiarities of nitride samples such as surface roughness and extended interface layers alter in comparison to an ideal film spectroscopic ellipsometry or reflectance spectra in a characteristic manner. It requires the application of multi-layer models for data analysis in order to determine reliable dielectric functions. Results of such an analysis for GaN covering a broad spectral range are given. Below the band gap, both ordinary and extraordinary components of the dielectric function tensor are determined for GaN as well as for AlN. The dielectric functions of MBE-grown InN characterised by a band gap of around 0.75 eV and a sputtered film exhibiting an absorption edge of around 1.9 eV are compared with results of first-principles calculations. Good agreement between theory and experiment is only found for the MBE-grown material providing further evidence that InN is a "narrow" band gap semiconductor. Finally, photocurrent measurements of a GaN Schottky-diode reveal the influence of electric fields on the shape of the excitonic absorption edge. The interpretation is supported by results of dielectric function calculations.

[1]  O. Ambacher,et al.  Exciton quenching in Pt/GaN Schottky diodes with Ga- and N-face polarity , 2003 .

[2]  Eugene E. Haller,et al.  Unusual properties of the fundamental band gap of InN , 2002 .

[3]  Hunter,et al.  UV reflectivity of GaN: Theory and experiment. , 1995, Physical review. B, Condensed matter.

[4]  S. Ivanov,et al.  Physical properties of InN with the band gap energy of 1.1 eV , 2001 .

[5]  Oliver Brandt,et al.  Optical properties of wurtzite AlxGa1-xN (x < 0.1) parallel and perpendicular to the c axis , 2001 .

[6]  B. Gil Stress effects on optical properties , 1999 .

[7]  Wei Lu,et al.  Carrier concentration and mobility in GaN epilayers on sapphire substrate studied by infrared reflection spectroscopy , 1999 .

[8]  R. Davis,et al.  Real‐time assessment of overlayer removal on GaN, AlN, and AlGaN surfaces using spectroscopic ellipsometry , 1996 .

[9]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[10]  P. Larsen,et al.  Spectroscopic ellipsometry on GaN: Comparison between hetero-epitaxial layers and bulk crystals , 1998 .

[11]  John D. Dow,et al.  Electroabsorption in Semiconductors: The Excitonic Absorption Edge , 1970 .

[12]  D. Aspnes Optical properties of thin films , 1982 .

[13]  L. Eastman,et al.  Progress in High-Power, High Frequency AlGaN/GaN HEMTs , 2002 .

[14]  R. R. Parsons,et al.  Optical properties and microstructure of reactively sputtered indium nitride thin films , 1988 .

[15]  Oliver Ambacher,et al.  Energy gap and optical properties of InxGa1–xN , 2003 .

[16]  K. Thonke,et al.  Photoluminescence and reflectance spectroscopy of excitonic transitions in high-quality homoepitaxial GaN films , 1999 .

[17]  C. Choy,et al.  Ellipsometry study of InN thin films prepared by magnetron sputtering , 2001 .

[18]  C. Parman,et al.  Optical properties of reactively sputtered indium nitride thin films , 1999 .

[19]  D. Aspnes Approximate solution of ellipsometric equations for optically biaxial crystals. , 1980, Journal of the Optical Society of America.

[20]  Ekmel Ozbay,et al.  High-speed solar-blind photodetectors with indium-tin-oxide Schottky contacts , 2003 .

[21]  Spectroscopic ellipsometry during metalorganic vapor phase epitaxy of InN , 2003 .

[22]  Rüdiger Goldhahn,et al.  Determination of the anisotropic dielectric function for wurtzite AlN and GaN by spectroscopic ellipsometry , 2003 .

[23]  J. Off,et al.  Characterization of GaN Epilayers Grown on Sapphire and SiC Substrates , 1997 .

[24]  Mathias Schubert,et al.  Free-carrier and phonon properties of n- and p-type hexagonal GaN films measured by infrared ellipsometry , 2000 .

[25]  C. T. Foxon,et al.  Reflectivity investigations as a method for characterizing group III nitride films , 1999 .

[26]  Hiroshi Harima,et al.  Optical bandgap energy of wurtzite InN , 2002 .

[27]  H. Casey,et al.  Optical-field calculations for lossy multiple-layer AlxGa1−xN/InxGa1−xN laser diodes , 1998 .

[28]  Robert F. Davis,et al.  Cleaning of AlN and GaN surfaces , 1998 .

[29]  C. T. Foxon,et al.  Optical study of the -GaN/GaAs interface properties as a function of MBE growth conditions , 1999 .

[30]  Eric L. Shirley,et al.  Ab initio calculation of ε 2 ( ω ) including the electron-hole interaction: Application to GaN and CaF 2 , 1999 .

[31]  Cathy P. Foley,et al.  Optical band gap of indium nitride , 1986 .

[32]  C. T. Foxon,et al.  Reflectivity study of hexagonal GaN films grown on GaAs: Surface roughness, interface layer, and refractive index , 1998 .

[33]  Shunro Fuke,et al.  Optical properties of hexagonal GaN , 1997 .

[34]  T. Drummond,et al.  Microstructure of GaN layers grown on (001) GaAs by plasma assisted molecular-beam epitaxy , 1997 .

[35]  R. Goldhahn,et al.  Optical constants of cubic GaN in the energy range of 1.5–3.7 eV , 1999 .

[36]  Theodore D. Moustakas,et al.  Distributed Bragg reflectors based on AlN/GaN multilayers , 1999 .

[37]  Marc Ilegems,et al.  Absorption, Reflectance, and Luminescence of GaN Epitaxial Layers , 1971 .

[38]  Hiroshi Harima,et al.  Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap. , 2002 .

[39]  Christensen,et al.  Optical and structural properties of III-V nitrides under pressure. , 1994, Physical review. B, Condensed matter.

[40]  Lester F. Eastman,et al.  Effect of an AlN buffer layer on the epitaxial growth of InN by molecular-beam epitaxy , 2001 .

[41]  D. Aspnes,et al.  Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry , 1979 .

[42]  J. Muth,et al.  Ordinary and extraordinary refractive indices for AlxGa1−xN epitaxial layers , 1999 .

[43]  W. Richter,et al.  Dielectric function of wurtzite GaN and AlN thin films , 1999 .

[44]  R. Ahuja,et al.  First-principle calculations of the dielectric function of zinc-blende and wurtzite InN , 2001 .

[45]  D. As,et al.  Electroluminescence of a cubic GaN/GaAs (001) p-n junction , 2000 .

[46]  Isamu Akasaki,et al.  Structural properties of InN on GaN grown by metalorganic vapor-phase epitaxy , 1999 .

[47]  S. Rashkeev,et al.  From Band Structures to Linear and Nonlinear Optical Spectra in Semiconductors , 2000 .