Plastic and Nonplastic Pyramidal Cells Perform Unique Roles in a Network Capable of Adaptive Redundancy Reduction

[1]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[2]  Joseph G. Hoffman,et al.  Physical Techniques in Biological Research , 1963 .

[3]  O. L. Zangwill,et al.  Current Problems in Animal Behavior , 1964 .

[4]  K. Frank,et al.  CHAPTER 2 – MICROELECTRODES FOR RECORDING AND STIMULATION , 1964 .

[5]  L. Maler,et al.  The posterior lateral line lobe of certain gymnotoid fish: Quantitative light microscopy , 1979, The Journal of comparative neurology.

[6]  L. Maler,et al.  The cytology of the posterior lateral line lobe of high‐frequency weakly electric fish (gymnotidae): Dendritic differentiation and synaptic specificity in a simple cortex , 1981, The Journal of comparative neurology.

[7]  E. Batschelet Circular statistics in biology , 1981 .

[8]  C E Carr,et al.  Efferent projections of the posterior lateral line lobe in gymnotiform fish , 1982, The Journal of comparative neurology.

[9]  Walter Heiligenberg,et al.  Court and spark: electric signals in the courtship and mating of gymnotoid fish , 1985, Animal Behaviour.

[10]  J. Bastian Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  Walter Heiligenberg,et al.  Neural Nets in Electric Fish , 1991 .

[14]  L. Maler,et al.  An atlas of the brain of the electric fish Apteronotus leptorhynchus , 1991, Journal of Chemical Neuroanatomy.

[15]  M H Ellisman,et al.  Immunohistochemical localization of ryanodine binding proteins in the central nervous system of gymnotiform fish , 1992, The Journal of comparative neurology.

[16]  D. Benson,et al.  Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory- motor cortex: comparison with GAD-67 expression , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  N. Bannister,et al.  Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: I. Branching patterns , 1995, The Journal of comparative neurology.

[18]  L. Maler,et al.  Inositol 1,4,5‐trisphosphate receptor localization in the brain of a weakly electric fish (Apteronotus leptorhynchus) with emphasis on the electrosensory system , 1995, The Journal of comparative neurology.

[19]  N. Bannister,et al.  Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions , 1995, The Journal of comparative neurology.

[20]  J Bastian,et al.  Plasticity in an electrosensory system. I. General features of a dynamic sensory filter. , 1996, Journal of neurophysiology.

[21]  J Bastian Plasticity in an electrosensory system. II. Postsynaptic events associated with a dynamic sensory filter. , 1996, Journal of neurophysiology.

[22]  C. Bell,et al.  The generation and subtraction of sensory expectations within cerebellum-like structures. , 1997, Brain, behavior and evolution.

[23]  R J Dunn,et al.  N‐methyl‐D‐aspartate receptor 1 mRNA distribution in the central nervous system of the weakly electric fish Apteronotus leptorhynchus , 1997, The Journal of comparative neurology.

[24]  J. Bastian,et al.  Modulation of calcium-dependent postsynaptic depression contributes to an adaptive sensory filter. , 1998, Journal of neurophysiology.

[25]  L. Maler,et al.  Alternative RNA Splicing of the NMDA Receptor NR1 mRNA in the Neurons of the Teleost Electrosensory System , 1998, The Journal of Neuroscience.

[26]  J. Bastian,et al.  Plasticity of feedback inputs in the apteronotid electrosensory system. , 1999, The Journal of experimental biology.

[27]  M. A. MacIver,et al.  Prey capture in the weakly electric fish Apteronotus albifrons: sensory acquisition strategies and electrosensory consequences. , 1999, The Journal of experimental biology.

[28]  I Segev,et al.  Untangling dendrites with quantitative models. , 2000, Science.

[29]  N. Lemon,et al.  Conditional spike backpropagation generates burst discharge in a sensory neuron. , 2000, Journal of neurophysiology.

[30]  Christof Koch,et al.  The role of single neurons in information processing , 2000, Nature Neuroscience.

[31]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[32]  H Barlow,et al.  Redundancy reduction revisited , 2001, Network.

[33]  R J Dunn,et al.  Function of NMDA receptors and persistent sodium channels in a feedback pathway of the electrosensory system. , 2001, Journal of neurophysiology.

[34]  Curtis C Bell,et al.  Memory-based expectations in electrosensory systems , 2001, Current Opinion in Neurobiology.

[35]  J. Bastian,et al.  Dendritic modulation of burst-like firing in sensory neurons. , 2001, Journal of neurophysiology.

[36]  Maurice J Chacron,et al.  Receptive Field Organization Determines Pyramidal Cell Stimulus-Encoding Capability and Spatial Stimulus Selectivity , 2002, The Journal of Neuroscience.

[37]  Brent Doiron,et al.  Non-classical receptive field mediates switch in a sensory neuron's frequency tuning , 2003, Nature.

[38]  Erik Harvey-Girard,et al.  Excitatory amino acid receptors of the electrosensory system: the NR1/NR2B N-methyl-D-aspartate receptor. , 2003, Journal of neurophysiology.

[39]  Brent Doiron,et al.  Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli , 2003, Nature.

[40]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[41]  K. Fox,et al.  Neocortical Long-Term Potentiation and Experience-Dependent Synaptic Plasticity Require α-Calcium/Calmodulin-Dependent Protein Kinase II Autophosphorylation , 2003, The Journal of Neuroscience.

[42]  Yehezkel Ben-Ari,et al.  The NMDA Receptor Is Coupled to the ERK Pathway by a Direct Interaction between NR2B and RasGRF1 , 2003, Neuron.

[43]  Bartlett W. Mel,et al.  Dendrites: bug or feature? , 2003, Current Opinion in Neurobiology.

[44]  Joseph Bastian,et al.  Morphological correlates of pyramidal cell adaptation rate in the electrosensory lateral line lobe of weakly electric fish , 1991, Journal of Comparative Physiology A.

[45]  Leonard Maler,et al.  Synaptic dynamics on different time scales in a parallel fiber feedback pathway of the weakly electric fish. , 2004, Journal of neurophysiology.

[46]  Leonard Maler,et al.  The organization of afferent input to the caudal lobe of the cerebellum of the gymnotid fish Apteronotus leptorhynchus , 2004, Anatomy and Embryology.

[47]  J. Bastian,et al.  Pyramidal-cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs , 2004, Journal of Comparative Physiology A.

[48]  J. Bastian,et al.  The role of amino acid neurotransmitters in the descending control of electroreception , 1993, Journal of Comparative Physiology A.

[49]  Joseph Bastian,et al.  The physiology and morphology of two types of electrosensory neurons in the weakly electric fishApteronotus leptorhynchus , 1984, Journal of Comparative Physiology A.

[50]  Brent Doiron,et al.  Ghostbursting: A Novel Neuronal Burst Mechanism , 2004, Journal of Computational Neuroscience.

[51]  M. G. Paulin,et al.  Neural simulations of adaptive reafference suppression in the elasmobranch electrosensory system , 1995, Journal of Comparative Physiology A.