Constructions of biregular cages of girth five

Abstract Let 2 ⩽ r m and g be positive integers. An ( { r , m } ; g ) –graph (or biregular graph) is a graph with degree set { r , m } and girth g, and an ( { r , m } ; g ) –cage (or biregular cage) is an ( { r , m } ; g ) –graph of minimum order n ( { r , m } ; g ) . If m = r + 1 , an ( { r , m } ; g ) –cage is said to be a semiregular cage. In this extended abstract we construct two infinite families of biregular cages and two semiregular cages, obtained from the incidence graphs of an affine and a biaffine plane by generalizations of the reduction and graph amalgam operations from [M. Abreu, G. Araujo-Pardo, C. Balbuena, D. Labbate. Families of Small Regular Graphs of Girth 5. Discrete Math. 312(18) (2012) 2832–2842].

[1]  Vito Napolitano,et al.  A family of regular graphs of girth 5 , 2008, Discret. Math..

[2]  G. Exoo,et al.  Dynamic Cage Survey , 2011 .

[3]  Ping Wang,et al.  On cages with given degree sets , 1992, Discret. Math..

[4]  Vito Napolitano,et al.  Íëìêêääëááae Âçíêaeaeä Ç Çååáaeaeìçêááë Îóðùññ ¿½´¾¼¼¼µ¸è× ½½½ß¾¼¼ , 2022 .

[5]  Camino Balbuena,et al.  Biregular Cages of Girth Five , 2012, Electron. J. Comb..

[6]  Camino Balbuena,et al.  Constructions of bi-regular cages , 2009, Discret. Math..

[7]  Gary Chartrand,et al.  Graphs with prescribed degree sets and girth , 1981 .

[8]  M. Funk,et al.  Girth Graphs from Elliptic Semiplanes , 2010 .

[9]  Camino Balbuena,et al.  Constructions of small regular bipartite graphs of girth 6 , 2011, Networks.

[10]  W. T. Tutte A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Mehdi Behzad,et al.  Graphs and Digraphs , 1981, The Mathematical Gazette.

[12]  Leif K. Jørgensen Girth 5 graphs from relative difference sets , 2005, Discret. Math..

[13]  Camino Balbuena,et al.  Families of small regular graphs of girth 5 , 2011, Discret. Math..