New Revocable IBE in Prime-Order Groups: Adaptively Secure, Decryption Key Exposure Resistant, and with Short Public Parameters

Revoking corrupted users is a desirable functionality for cryptosystems. Since Boldyreva, Goyal, and Kumar (ACM CCS 2008) proposed a notable result for scalable revocation method in identity-based encryption (IBE), several works have improved either the security or the efficiency of revocable IBE (RIBE). Currently, all existing scalable RIBE schemes that achieve adaptively security against decryption key exposure resistance (DKER) can be categorized into two groups; either with long public parameters or over composite-order bilinear groups. From both practical and theoretical points of views, it would be interesting to construct adaptively secure RIBE scheme with DKER and short public parameters in prime-order bilinear groups.

[1]  Allison Bishop,et al.  New Techniques for Dual System Encryption and Fully Secure HIBE with Short Ciphertexts , 2010, IACR Cryptol. ePrint Arch..

[2]  Keita Emura,et al.  Revocable hierarchical identity-based encryption , 2014, Theor. Comput. Sci..

[3]  Dong Hoon Lee,et al.  New Constructions of Revocable Identity-Based Encryption From Multilinear Maps , 2015, IEEE Transactions on Information Forensics and Security.

[4]  Sanjit Chatterjee,et al.  Variants of Waters' Dual-System Primitives Using Asymmetric Pairings , 2012, IACR Cryptol. ePrint Arch..

[5]  Shantian Cheng,et al.  Adaptive-ID Secure Revocable Identity-Based Encryption from Lattices via Subset Difference Method , 2015, ISPEC.

[6]  Huaxiong Wang,et al.  Anonymous and Adaptively Secure Revocable IBE with Constant Size Public Parameters , 2012, ArXiv.

[7]  Keita Emura,et al.  Revocable Identity-Based Encryption Revisited: Security Model and Construction , 2013, Public Key Cryptography.

[8]  Palash Sarkar,et al.  Efficient (Anonymous) Compact HIBE from Standard Assumptions , 2014, ProvSec.

[9]  Huaxiong Wang,et al.  Revocable IBE Systems with Almost Constant-Size Key Update , 2013, Pairing.

[10]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[11]  Vipul Goyal,et al.  Identity-based encryption with efficient revocation , 2008, IACR Cryptol. ePrint Arch..

[12]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[13]  Keita Emura,et al.  Revocable hierarchical identity-based encryption via history-free approach , 2016, Theor. Comput. Sci..

[14]  Benoît Libert,et al.  Adaptive-ID Secure Revocable Identity-Based Encryption , 2009, CT-RSA.

[15]  Keita Emura,et al.  Semi-Generic Transformation of Revocable Hierarchical Identity-Based Encryption and Its DBDH Instantiation , 2016, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[16]  Hoeteck Wee,et al.  Déjà Q: Encore! Un Petit IBE , 2016, TCC.

[17]  Keita Emura,et al.  Adaptive-ID Secure Revocable Hierarchical Identity-Based Encryption , 2015, IWSEC.

[18]  Robert H. Deng,et al.  Server-Aided Revocable Identity-Based Encryption , 2015, ESORICS.

[19]  Eike Kiltz,et al.  Direct chosen-ciphertext secure identity-based key encapsulation without random oracles , 2009, Theor. Comput. Sci..

[20]  Yohei Watanabe,et al.  Constructions of CCA-Secure Revocable Identity-Based Encryption , 2015, ACISP.

[21]  Kenneth G. Paterson,et al.  Pairings for Cryptographers , 2008, IACR Cryptol. ePrint Arch..

[22]  Kwangsu Lee,et al.  Revocable hierarchical identity-based encryption with shorter private keys and update keys , 2018, Designs, Codes and Cryptography.

[23]  Dong Hoon Lee,et al.  Efficient revocable identity-based encryption via subset difference methods , 2017, Des. Codes Cryptogr..

[24]  Dong Hoon Lee,et al.  Unbounded Hierarchical Identity-Based Encryption with Efficient Revocation , 2015, WISA.

[25]  Dan Boneh,et al.  Efficient Selective-ID Secure Identity Based Encryption Without Random Oracles , 2004, IACR Cryptol. ePrint Arch..

[26]  Huaxiong Wang,et al.  Revocable Identity-Based Encryption from Lattices , 2012, ACISP.

[27]  Moni Naor,et al.  Revocation and Tracing Schemes for Stateless Receivers , 2001, CRYPTO.

[28]  Craig Gentry,et al.  Practical Identity-Based Encryption Without Random Oracles , 2006, EUROCRYPT.

[29]  Keita Emura,et al.  Revocable Identity-Based Encryption with Rejoin Functionality , 2014, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences.

[30]  Keita Emura,et al.  Revocable Hierarchical Identity-Based Encryption: History-Free Update, Security Against Insiders, and Short Ciphertexts , 2015, CT-RSA.

[31]  Allison Lewko,et al.  Tools for simulating features of composite order bilinear groups in the prime order setting , 2012 .

[32]  Kwangsu Lee Revocable Hierarchical Identity-Based Encryption with Adaptive Security , 2016, IACR Cryptol. ePrint Arch..

[33]  Keita Emura,et al.  Revocable Identity-Based Cryptosystem Revisited: Security Models and Constructions , 2014, IEEE Transactions on Information Forensics and Security.

[34]  Jonathan Katz,et al.  Chosen-Ciphertext Security from Identity-Based Encryption , 2004, SIAM J. Comput..

[35]  Charanjit S. Jutla,et al.  Shorter Quasi-Adaptive NIZK Proofs for Linear Subspaces , 2013, ASIACRYPT.

[36]  Hoeteck Wee,et al.  Shorter identity-based encryption via asymmetric pairings , 2013, Designs, Codes and Cryptography.

[37]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[38]  Keita Emura,et al.  Efficient Delegation of Key Generation and Revocation Functionalities in Identity-Based Encryption , 2013, CT-RSA.

[39]  Paulo S. L. M. Barreto,et al.  Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.

[40]  Brent Waters,et al.  Efficient Identity-Based Encryption Without Random Oracles , 2005, EUROCRYPT.

[41]  Brent Waters,et al.  Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions , 2009, IACR Cryptol. ePrint Arch..