The Effect of Integrating Travel Time

This contribution demonstrates the potential gain for the quality of results in a simulation of pedestrians when estimated remaining travel time is considered as a determining factor for the movement of simulated pedestrians. This is done twice: once for a force-based model and once for a cellular automata-based model. The results show that for the (degree of realism of) simulation results it is more relevant if estimated remaining travel time is considered or not than which modeling technique is chosen – here force-based vs. cellular automata – which normally is considered to be the most basic choice of modeling approach.

[1]  Michael Schreckenberg,et al.  Moore and more and symmetry , 2008, ArXiv.

[2]  C. Rogsch,et al.  Basics of Software-Tools for Pedestrian Movement—Identification and Results , 2012 .

[3]  Ross T. Whitaker,et al.  A Fast Iterative Method for Eikonal Equations , 2008, SIAM J. Sci. Comput..

[4]  Dirk Helbing,et al.  Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data , 2007, Adv. Complex Syst..

[5]  S. Dai,et al.  Centrifugal force model for pedestrian dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Michael Schreckenberg,et al.  The F.A.S.T.-Model , 2006, ACRI.

[7]  Tobias Kretz,et al.  The Dynamic Distance Potential Field in a Situation with Asymmetric Bottleneck Capacities , 2010, ACRI.

[8]  Michael Schreckenberg,et al.  Counterflow Extension for the F.A.S.T.-Model , 2008, ACRI.

[9]  D. Wolf,et al.  Traffic and Granular Flow , 1996 .

[10]  Armin Seyfried,et al.  The repulsive force in continous space models of pedestrian movement , 2008 .

[11]  Ross T. Whitaker A FAST EIKONAL EQUATION SOLVER FOR PARALLEL SYSTEMS , 2007 .

[12]  Tobias Kretz,et al.  Pedestrian traffic: on the quickest path , 2009, ArXiv.

[13]  M. Sherif The Psychology of Social Norms , 1937 .

[14]  Ulrich Weidmann,et al.  Transporttechnik der Fussgänger: Transporttechnische Eigenschaften des Fussgängerverkehrs, Literaturauswertung , 1992 .

[15]  Uwe D. Hanebeck,et al.  Calibrating dynamic pedestrian route choice with an Extended Range Telepresence System , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[16]  Hubert Klüpfel,et al.  Evacuation Dynamics: Empirical Results, Modeling and Applications , 2009, Encyclopedia of Complexity and Systems Science.

[17]  E. F. Codd,et al.  Cellular automata , 1968 .

[18]  Tobias Kretz,et al.  Pedestrian Traffic - Simulation and Experiments , 2007 .

[19]  Michael Schreckenberg,et al.  F.A.S.T. - Floor field- and Agent-based Simulation Tool , 2006, ArXiv.

[20]  Edward Chung,et al.  Transport Simulation: Beyond Traditional Approaches , 2009 .

[21]  Peter Vortisch,et al.  Quickest Paths in Simulations of Pedestrians , 2011, Adv. Complex Syst..

[22]  Dirk Helbing,et al.  Pedestrian, Crowd and Evacuation Dynamics , 2013, Encyclopedia of Complexity and Systems Science.

[23]  Peter Vortisch,et al.  Pedestrian Flow at Bottlenecks - Validation and Calibration of Vissim's Social Force Model of Pedestrian Traffic and its Empirical Foundations , 2008, ArXiv.

[24]  W. Jeong UUCS-07-010 A Fast Iterative Method for a Class of Hamilton-Jacobi Equations on Parallel Systems , 2007 .

[25]  Robert A. Meyers,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[26]  Dirk Helbing,et al.  Experimental study of the behavioural mechanisms underlying self-organization in human crowds , 2009, Proceedings of the Royal Society B: Biological Sciences.

[27]  Tobias Kretz,et al.  The use of dynamic distance potential fields for pedestrian flow around corners , 2009, ArXiv.

[28]  Tobias Kretz CA and MAS - With the NaSch as Example , 2010, ACRI.

[29]  Mohcine Chraibi,et al.  Generalized centrifugal-force model for pedestrian dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Tobias Kretz,et al.  Computation Speed of the F.A.S.T. Model , 2009, ArXiv.

[31]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  F. H. Hankins,et al.  The Psychology of Social Norms , 1937 .

[33]  M. Rascle,et al.  Geodesics and Shortest Paths Approach in Pedestrian Motions , 2013 .

[34]  Hubert Klüpfel,et al.  Fundamentals of Pedestrian and Evacuation Dynamics , 2009, Multi-Agent Systems for Traffic and Transportation Engineering.

[35]  Uwe D. Hanebeck,et al.  Using Extended Range Telepresence to Collect Data on Pedestrian Dynamics , 2012 .

[36]  Taras I. Lakoba,et al.  Modifications of the Helbing-Molnár-Farkas-Vicsek Social Force Model for Pedestrian Evolution , 2005, Simul..

[37]  Tobias Kretz,et al.  Applications of the Dynamic Distance Potential Field Method , 2009, ArXiv.

[38]  Peter Vortisch,et al.  Comparison of Various Methods for the Calculation of the Distance Potential Field , 2008, ArXiv.

[39]  Teresa L. Young,et al.  The F.A.S.T. Model , 2007 .

[40]  Ana L. C. Bazzan,et al.  Multi-Agent Systems for Traffic and Transportation Engineering , 2009 .