CO2 reforming of methane over Ni–Ru and Ni–Pd bimetallic catalysts

[1]  X. Verykios,et al.  Specific Features Concerning the Mechanism of Methane Reforming by Carbon Dioxide over Ni/La2O3Catalyst , 1997 .

[2]  A. York,et al.  A Sustainable Catalyst for the Partial Oxidation of Methane to Syngas: Ni/Ca1‐xSrxTiO3, Prepared In Situ from Perovskite Precursors , 1996 .

[3]  S. Tang,et al.  Effect of supports on the carbon deposition of nickel catalysts for methane reforming with CO2 , 1995 .

[4]  T. Paryjczak,et al.  Characterization of alumina supported nickel-ruthenium systems , 1995 .

[5]  Malcolm L. H. Green,et al.  Recent advances in the conversion of methane to synthesis gas , 1995 .

[6]  T. Paryjczak,et al.  Temperature-programmed reduction of alumina-supported Ni–Pt systems , 1995 .

[7]  G. Bond,et al.  Catalysis by metals and alloys , 1995 .

[8]  C. Mirodatos,et al.  Deactivation of supported nickel catalysts during the reforming of methane by carbon dioxide , 1994 .

[9]  X. Verykios,et al.  Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts , 1994 .

[10]  F. Solymosi,et al.  Catalytic reaction of methane with carbon dioxide over supported palladium , 1994 .

[11]  S. Galvagno,et al.  Ru–Cu/SiO2 catalysts: characterization by FTIR spectroscopy , 1994 .

[12]  Jens R. Rostrup-Nielsen,et al.  CO2-Reforming of Methane over Transition Metals , 1993 .

[13]  Malcolm L. H. Green,et al.  Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion , 1992 .

[14]  F. Bozon-Verduraz,et al.  Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium–alumina catalysts , 1992 .

[15]  Malcolm L. H. Green,et al.  Partial oxidation of methane to synthesis gas using carbon dioxide , 1991, Nature.

[16]  C. Louis,et al.  An infrared study of CO adsorption on reduced and oxidized Ru/SiO2 , 1989 .

[17]  A. Lemonidou,et al.  Preparation and evaluation of catalysts for the production of ethylene via steam cracking: Effect of Operating Conditions on the Performance of 12CaO-7Al2O3 Catalyst , 1989 .

[18]  Glover A. Jones,et al.  Interstitial carbon in palladium , 1985 .

[19]  T. Borowiecki Nickel catalysts for steam reforming of hydrocarbons: phase composition and resistance to coking , 1984 .

[20]  D. Resasco,et al.  The effect of silica support texture and anion of impregnating solution on Ru dispersion and on RuCu interaction , 1983 .

[21]  H. V. Bekkum,et al.  Characterization of ruthenium catalysts as studied by temperature programmed reduction , 1981 .

[22]  Alexis T. Bell,et al.  An infrared study of alumina- and silica-supported ruthenium cluster carbonyls , 1980 .

[23]  E. L. Kugler,et al.  Ligand and ensemble effects in the adsorption of carbon monoxide on supported palladium-gold alloys , 1979 .

[24]  C. H. Rochester,et al.  Infrared study of effects of sulphur-poisoning on the adsorption of carbon monoxide by nickel , 1977 .

[25]  J. Dalmon,et al.  Adsorption of CO on well-defined Ni/SiO2 catalysts in the 195–373 K range studied by infrared spectroscopy and magnetic methods , 1977 .

[26]  R. D. Betta Carbon monoxide adsorption on supported ruthenium , 1975 .

[27]  R. Kokes,et al.  The infrared spectrum of carbon monoxide on reduced and oxidized palladium , 1975 .