On the b-Coloring of Cographs and P4-Sparse Graphs

A b-coloring of a graph is a coloring such that every color class admits a vertex adjacent to at least one vertex receiving each of the colors not assigned to it. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is b-continuous if it admits a b-coloring with t colors, for every $$t = \chi(G), \ldots, \chi_b(G)$$ . We define a graph G to be b-monotonic if χb(H1) ≥ χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. In this work, we prove that P4-sparse graphs (and, in particular, cographs) are b-continuous and b-monotonic. Besides, we describe a dynamic programming algorithm to compute the b-chromatic number in polynomial time within these graph classes.

[1]  Chính T. Hoàng,et al.  On the b-dominating coloring of graphs , 2005, Discret. Appl. Math..

[2]  David Manlove,et al.  The b-chromatic Number of a Graph , 1999, Discret. Appl. Math..

[3]  Frédéric Maffray,et al.  On b-perfect Chordal Graphs , 2007, Graphs Comb..

[4]  Klaus Jansen,et al.  Maximum Covering with D Cliques , 1993, FCT.

[5]  Chính T. Hoàng,et al.  On minimally b-imperfect graphs , 2009, Discret. Appl. Math..

[6]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[7]  Mario Valencia-Pabon,et al.  On Approximating the B-Chromatic Number , 2003, Discret. Appl. Math..

[8]  Stephan Olariu,et al.  Linear Time optimization Algorithms for P4-sparse Graphs , 1995, Discret. Appl. Math..

[9]  Manouchehr Zaker,et al.  Bounds for the b-chromatic number of some families of graphs , 2006, Discret. Math..

[10]  Hans L. Bodlaender,et al.  Achromatic Number is NP-Complete for Cographs and Interval Graphs , 1989, Inf. Process. Lett..

[11]  Stephan Olariu,et al.  A tree representation for P4-sparse graphs , 1992, Discret. Appl. Math..

[12]  Stephan Olariu,et al.  Recognizing P_4 Sparse Graphs in Linear Time , 1992, SIAM J. Comput..

[13]  S. E. Markosyan,et al.  ω-Perfect graphs , 1990 .

[14]  Taoufik Faik,et al.  La b-continuite des b-colorations : complexité, propriétés structurelles et algorithmes , 2005 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  L. Lovász A Characterization of Perfect Graphs , 1972 .

[17]  Brice Effantin,et al.  The b-chromatic number of some power graphs , 2003 .