A new approach for testing variations of fundamental constants over cosmic epochs using FIR fine-structure lines

Aims. We aim to obtain limits on the variation of the fine-structure constant α and the electron-to-proton mass ratio μ over different cosmological epochs. Methods. A new approach based on the comparison of redshifts of far infrared (FIR) fine-structure lines and low-lying rotational transitions in CO is proposed which is in principle more sensitive by a factor of ~10 than QSO metal absorption lines. Results. Estimations of the quotient $F = \alpha^2/\mu$ obtained for two distant quasars J1148+5251 ( z = 6.42) and BR 1202–0725 ( z = 4.69) provide ${\Delta F}/{F}$ = (0.1 ± 1.0)$\times$10 -4 and (1.4 ± 1.5)$\times$10 -4 . The obtained limits are consistent with no variation of physical constants at the level of ~0.01% over a period of 13 Gyr. Conclusions. Upcoming observations of quasars and distant galaxies in FIR fine-structure lines of different species and in CO low rotational lines at the SOFIA, HSO, and ALMA are expected to improve the current limit by, at least, an order of magnitude.

[1]  Jeffrey L. Linsky,et al.  The Structure of the Local Interstellar Medium. IV. Dynamics, Morphology, Physical Properties, and Implications of Cloud-Cloud Interactions , 2007, 0709.4480.

[2]  D. Teyssier,et al.  Physical characteristics of a dark cloud in an early stage of star formation toward NGC 7538 : An outer Galaxy infrared dark cloud? , 2007, 0709.0619.

[3]  D. Reimers,et al.  Transition frequency shifts with fine-structure-constant variation for Fe II: Breit and core-valence correlation corrections , 2007, 0708.1662.

[4]  A. Weiss,et al.  Molecular gas in QSO host galaxies at z > 5 , 2007, 0707.3335.

[5]  C. Scóccola,et al.  Time variation of the fine structure constant in the early universe and the Bekenstein model , 2007, 0707.0661.

[6]  V. Flambaum,et al.  Limit on the cosmological variation of mp/me from the inversion spectrum of ammonia. , 2007, Physical review letters.

[7]  V. Flambaum Variation of fundamental constants: theory and observations , 2007, 0705.3704.

[8]  T. Dent,et al.  Primordial nucleosynthesis as a probe of fundamental physics parameters , 2007, 0705.0696.

[9]  J. Isern,et al.  Astronomical measurements and constraints on the variability of fundamental constants , 2007 .

[10]  R. Neri,et al.  Atomic Carbon in APM 08279+5255 at z = 3.91 , 2006 .

[11]  M. Murphy,et al.  Probing variations in fundamental constants with radio and optical quasar absorption‐line observations , 2006, astro-ph/0610326.

[12]  Ė. Sharapov,et al.  Time-variability of alpha from realistic models of Oklo reactors , 2006, nucl-ex/0701019.

[13]  M. Kawasaki,et al.  CMB constraints on the simultaneous variation of the fine structure constant and the electron mass , 2006 .

[14]  D. Hollenbach,et al.  [Si II], [Fe II], [C II], and H2 Emission from Massive Star-forming Regions , 2006 .

[15]  D. Iono,et al.  A Detection of [C II] Line Emission in the z = 4.7 QSO BR 1202–0725 , 2006, astro-ph/0606043.

[16]  N. Abel The H+ region contribution to [C ii] 158-μm emission , 2006, astro-ph/0604212.

[17]  P. Petitjean,et al.  Variation of the fine-structure constant: very high resolution spectrum of QSO HE 0515-4414 , 2006, astro-ph/0601194.

[18]  Harvard,et al.  Detectability of [C II] 158 μm Emission from High-Redshift Galaxies: Predictions for ALMA and SPICA , 2006, astro-ph/0601155.

[19]  C. Carilli,et al.  Constraints on changes in fundamental constants from a cosmologically distant OH absorber or emitter. , 2005, Physical review letters.

[20]  A. Weiss,et al.  First detection of [CII]158 μm at high redshift : vigorous star formation in the early universe , 2005, astro-ph/0508064.

[21]  M. Onegin,et al.  Natural nuclear reactor at Oklo and variation of fundamental constants: Computation of neutronics of a fresh core , 2005, hep-ph/0506186.

[22]  Y. Fujii A possible new interpretation of the results of Δα/α from QSO absorption lines , 2005, astro-ph/0502191.

[23]  Iap,et al.  Atomic carbon in PSS 2322+1944, a quasar at redshift 4.12 , 2004, astro-ph/0411085.

[24]  Xiaohui Fan,et al.  Resolved Molecular Gas in a Quasar Host Galaxy at Redshift z = 6.42 , 2004, astro-ph/0410229.

[25]  F. Walter,et al.  Atomic carbon at redshift ~2.5 , 2004, astro-ph/0409711.

[26]  James M. Moran,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[27]  W. Thi,et al.  C i lines as tracers of molecular gas, and their prospects at high redshifts , 2004 .

[28]  J. Barrow,et al.  Local and global variations of the fine-structure constant , 2003, astro-ph/0309273.

[29]  A. Weiss,et al.  Gas and dust in the Cloverleaf quasar at redshift 2.5 , 2003, astro-ph/0309048.

[30]  K. M. Menten,et al.  High-excitation CO in a quasar host galaxy at z = 6.42 , 2003, astro-ph/0307408.

[31]  D. Schlegel,et al.  Does the Fine-Structure Constant Vary with Cosmological Epoch? , 2003, astro-ph/0301507.

[32]  V. Narayanan,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.

[33]  G. Gavazzi,et al.  [CII] at 158 mu m as a star formation tracer in late-type galaxies , 2002, astro-ph/0201471.

[34]  V. Dzuba,et al.  α dependence of transition frequencies for ions Si II , Cr II , Fe II , Ni II , and Zn II , 2001, physics/0112093.

[35]  P. Langacker,et al.  Implications of gauge unification for time variation of the fine structure constant , 2001, hep-ph/0112233.

[36]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.

[37]  T. Wiklind,et al.  Improved constraints on possible variation of physical constants from H i 21‐cm and molecular QSO absorption lines , 2001, astro-ph/0101519.

[38]  A. G. de Bruyn,et al.  Astronomical constraints on the cosmic evolution of the fine structure constant and possible quantum dimensions. , 2000, Physical review letters.

[39]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[40]  Cambridge,et al.  Millimetre/submillimetre-wave emission-line searches for high-redshift galaxies , 1999, astro-ph/9911108.

[41]  NASA Ames Research Center,et al.  Far-Infrared and Submillimeter Emission from Galactic and Extragalactic Photodissociation Regions , 1999, astro-ph/9907255.

[42]  D. Spergel,et al.  Detecting z > 10 Objects through Carbon, Nitrogen, and Oxygen Emission Lines , 1998, astro-ph/9803236.

[43]  J. Barrow,et al.  NEW LIMITS ON THE POSSIBLE VARIATION OF PHYSICAL CONSTANTS , 1997, astro-ph/9711290.

[44]  Antony A. Stark,et al.  Potential Measurement of the Luminosity Function of 158 Micron [C II] at High Redshifts: A Test of Galaxy Formation Models , 1997 .

[45]  R. Antonucci,et al.  Multiple CO Transitions, C I, and HCN from the Cloverleaf Quasar , 1997, astro-ph/9702118.

[46]  R. McMahon,et al.  Molecular gas and dust around a radio-quiet quasar at redshift 4.69 , 1996, Nature.

[47]  P. Caselli,et al.  The Line Width--Size Relation in Massive Cloud Cores , 1995 .

[48]  S. Levshakov Differential measurements of the fine-structure constant from quasar spectra: a test of Kaluza-Klein cosmologies , 1994 .

[49]  Mark S. Miesch,et al.  Statistical Analysis of Turbulence in Molecular Clouds , 1994 .

[50]  C. Bennett,et al.  Galactic fine-structure lines - Morphologies of the warm ionized interstellar medium , 1993 .

[51]  Abraham Loeb,et al.  Finding protoquasars at high resdshifts , 1993 .

[52]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[53]  G. Stacey,et al.  The 157-micron forbidden C II luminosity of the Galaxy. II - The presence of knotlike features in the forbidden C II emission , 1985 .

[54]  W. Marciano Time Variation of the Fundamental "Constants" and Kaluza-Klein Theories , 1984 .

[55]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[56]  D. Varshalovich,et al.  Have the masses of molecules changed during the lifetime of the Universe , 1996 .

[57]  John N. Bahcall,et al.  Fine-Structure Transitions and the Background Microwave Radiation , 1969 .

[58]  M. A. Strauss,et al.  to appear in the Astrophysical Journal Letters Detection of 1.6 × 10 10 M ⊙ of molecular gas in the host galaxy of the z = 5.77 SDSS quasar J0927+2001. , 2022 .