A parallel sparse algorithm targeting arterial fluid mechanics computations

Iterative solution of large sparse nonsymmetric linear equation systems is one of the numerical challenges in arterial fluid–structure interaction computations. This is because the fluid mechanics parts of the fluid + structure block of the equation system that needs to be solved at every nonlinear iteration of each time step corresponds to incompressible flow, the computational domains include slender parts, and accurate wall shear stress calculations require boundary layer mesh refinement near the arterial walls. We propose a hybrid parallel sparse algorithm, domain-decomposing parallel solver (DDPS), to address this challenge. As the test case, we use a fluid mechanics equation system generated by starting with an arterial shape and flow field coming from an FSI computation and performing two time steps of fluid mechanics computation with a prescribed arterial shape change, also coming from the FSI computation. We show how the DDPS algorithm performs in solving the equation system and demonstrate the scalability of the algorithm.

[1]  T. Tezduyar,et al.  A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms , 2012 .

[2]  Vipin Kumar,et al.  Parallel Multilevel k-way Partitioning Scheme for Irregular Graphs , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[3]  Murat Manguoglu,et al.  Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement , 2010 .

[4]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[5]  Tayfun E. Tezduyar,et al.  PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS WITH COMPLEX GEOMETRIES , 1997 .

[6]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[7]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[8]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces , 2007 .

[9]  Rainald Löhner,et al.  Extending the Range and Applicability of the Loose Coupling Approach for FSI Simulations , 2006 .

[10]  A. Sameh,et al.  Preconditioning Techniques for Nonsymmetric Linear Systems in the Computation of Incompressible Flows , 2009 .

[11]  Tayfun E. Tezduyar,et al.  Flow simulation and high performance computing , 1996 .

[12]  Marek Behr,et al.  The Shear-Slip Mesh Update Method , 1999 .

[13]  T. Tezduyar,et al.  Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—Dependence of the effect on the aneurysm shape , 2007 .

[14]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[15]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of arterial fluid–structure interactions with patient‐specific data , 2010 .

[16]  Katsuji Tanizawa,et al.  Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids , 2007 .

[17]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[18]  Murat Manguoglu,et al.  Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement , 2011 .

[19]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[20]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[21]  Arif Masud,et al.  A Multiscale/stabilized Formulation of the Incompressible Navier–Stokes Equations for Moving Boundary Flows and Fluid–structure Interaction , 2006 .

[22]  Victor M. Calo,et al.  YZβ discontinuity capturing for advection‐dominated processes with application to arterial drug delivery , 2007 .

[23]  T. Tezduyar,et al.  Influencing factors in image‐based fluid–structure interaction computation of cerebral aneurysms , 2011 .

[24]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a cross parachute: Numerical simulation , 2001 .

[25]  Roland Wüchner,et al.  Algorithmic treatment of shells and free form-membranes in FSI , 2006 .

[26]  Jack J. Dongarra,et al.  On some parallel banded system solvers , 1984, Parallel Comput..

[27]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[28]  T. Tezduyar,et al.  Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures , 2006 .

[29]  Yuri Bazilevs,et al.  Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation , 2008, Stroke.

[30]  Ahmed H. Sameh,et al.  A parallel hybrid banded system solver: the SPIKE algorithm , 2006, Parallel Comput..

[31]  David J. Kuck,et al.  Practical Parallel Band Triangular System Solvers , 1978, TOMS.

[32]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[33]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[34]  Tayfun E. Tezduyar,et al.  Modeling of fluid–structure interactions with the space–time finite elements: contact problems , 2008 .

[35]  T. Tezduyar,et al.  Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique , 2008 .

[36]  P. Nithiarasu,et al.  A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method , 2008 .

[37]  Ryo Torii,et al.  Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms , 2010 .

[38]  Michael W. Berry,et al.  Multiprocessor Schemes for Solving Block Tridiagonal Linear Systems , 1988 .

[39]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[40]  Ming-Chen Hsu,et al.  Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms , 2010, Biomechanics and modeling in mechanobiology.

[41]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[42]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[43]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[44]  Toshio Kobayashi,et al.  Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes , 2009 .

[45]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[46]  Kenji Takizawa,et al.  Space–time fluid–structure interaction modeling of patient‐specific cerebral aneurysms , 2011 .

[47]  A. Sameh,et al.  A nested iterative scheme for computation of incompressible flows in long domains , 2008 .

[48]  Toshiaki Hisada,et al.  Fluid–structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method , 2007 .

[49]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[50]  Toshio Kobayashi,et al.  Influence of wall elasticity in patient-specific hemodynamic simulations , 2007 .

[51]  Ahmed Sameh,et al.  SPIKE: A parallel environment for solving banded linear systems , 2007 .

[52]  Duncan H. Lawrie,et al.  The computation and communication complexity of a parallel banded system solver , 1984, TOMS.

[53]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[54]  R. Löhner,et al.  Fast numerical solutions of patient‐specific blood flows in 3D arterial systems , 2010, International journal for numerical methods in biomedical engineering.

[55]  Tayfun E. Tezduyar,et al.  Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions , 2010 .

[56]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[57]  Perumal Nithiarasu,et al.  Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient‐specific carotid bifurcation , 2010 .

[58]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics , 2007 .

[59]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of parachute clusters , 2011 .

[60]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[61]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[62]  Yuri Bazilevs,et al.  From imaging to prediction: Emerging non-invasive methods in pediatric cardiology , 2010 .

[63]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[64]  T. Tezduyar,et al.  Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling , 2008 .

[65]  Tayfun E. Tezduyar,et al.  Parallel fluid dynamics computations in aerospace applications , 1995 .

[66]  Toshio Kobayashi,et al.  Influence of wall elasticity on image-based blood flow simulations , 2004 .

[67]  Tayfun E. Tezduyar,et al.  Multiscale sequentially-coupled arterial FSI technique , 2010 .

[68]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[69]  David J. Kuck,et al.  On Stable Parallel Linear System Solvers , 1978, JACM.

[70]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[71]  René de Borst,et al.  On the Nonnormality of Subiteration for a Fluid-Structure-Interaction Problem , 2005, SIAM J. Sci. Comput..

[72]  Thirumalachari Sundararajan,et al.  Non‐Newtonian blood flow study in a model cavopulmonary vascular system , 2011 .

[73]  Hans-Joachim Bungartz,et al.  Fluid-Structure Interaction on Cartesian Grids: Flow Simulation and Coupling Environment , 2006 .

[74]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[75]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes , 2008 .

[76]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[77]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[78]  Tayfun E. Tezduyar,et al.  Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—An overview , 2007 .

[79]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[80]  Kenji Takizawa,et al.  Patient‐specific arterial fluid–structure interaction modeling of cerebral aneurysms , 2011 .

[81]  Roger Ohayon,et al.  Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems , 2001 .

[82]  Vipin Kumar,et al.  Parallel Multilevel series k-Way Partitioning Scheme for Irregular Graphs , 1999, SIAM Rev..

[83]  S. Mittal,et al.  Massively parallel finite element computation of incompressible flows involving fluid-body interactions , 1994 .

[84]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes , 2011 .

[85]  Tayfun E. Tezduyar,et al.  PARALLEL FINITE ELEMENT SIMULATION OF 3D INCOMPRESSIBLE FLOWS: FLUID-STRUCTURE INTERACTIONS , 1995 .

[86]  Tayfun E. Tezduyar,et al.  Computation of free-surface flows and fluid–object interactions with the CIP method based on adaptive meshless soroban grids , 2007 .

[87]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[88]  J. G. Kennedy,et al.  Computation of incompressible flows with implicit finite element implementations on the Connection Machine , 1993 .

[89]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[90]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[91]  Tayfun E. Tezduyar,et al.  Fluid-Structure Interaction Modeling of Spacecraft Parachutes for Simulation-Based Design , 2012 .

[92]  Toshio Kobayashi,et al.  Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms , 2010 .

[93]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[94]  F Mut,et al.  Clinical application of image‐based CFD for cerebral aneurysms , 2011, International journal for numerical methods in biomedical engineering.

[95]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[96]  Murat Manguoglu A domain-decomposing parallel sparse linear system solver , 2011, J. Comput. Appl. Math..

[97]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[98]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[99]  Tayfun E. Tezduyar,et al.  Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique , 2009 .

[100]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[101]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .