Performance characterization of a new high resolution PET scintillation detector

We present measurements of a new high resolution PET scintillation detector. The detector is capable of recording the 3-D coordinates, energy, and arrival time of the individual photon interactions in the scintillation crystal. The incident radiation interacts edge-on with the crystal array. This new detection concept is very different than the standard block design. Measured energy, time and spatial resolution of the detector modules are reported.

[1]  E. Hoffman,et al.  Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. , 1999, Physics in medicine and biology.

[2]  S. Cherry,et al.  High-resolution PET detector design: modelling components of intrinsic spatial resolution , 2005, Physics in medicine and biology.

[3]  Kwang Suk Park,et al.  Four-layer DOI detector with a relative offset in animal PET system , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[4]  W. Leo,et al.  Techniques for Nuclear and Particle Physics Experiments , 1987 .

[5]  S R Cherry,et al.  Performance measurements of a depth-encoding PET detector module based on position-sensitive avalanche photodiode read-out , 2004, Physics in medicine and biology.

[6]  Tom K Lewellen,et al.  Recent developments in PET detector technology , 2008, Physics in medicine and biology.

[7]  C. Levin,et al.  Effects of multiple photon interactions in a high resolution PET system that uses 3-D positioning detectors , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[8]  W. Moses,et al.  A room temperature LSO/PIN photodiode PET detector module that measures depth of interaction , 1995 .

[9]  C. Levin,et al.  A New Positioning Algorithm for Position-Sensitive Avalanche Photodiodes , 2007, IEEE Transactions on Nuclear Science.

[10]  S. Derenzo,et al.  Application of mathematical removal of positron range blurring in positron emission tomography , 1990 .

[11]  A.M.K. Foudray,et al.  Performance Characterization of a Novel Thin Position-Sensitive Avalanche Photodiode for 1 mm Resolution Positron Emission Tomography , 2007, IEEE Transactions on Nuclear Science.

[12]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[13]  C. Levin,et al.  Effects of thermal regulation structures on the photon sensitivity and spatial resolution of a 1 mm3 resolution breast-dedicated PET system , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[14]  M.E. Casey,et al.  Investigation of the "Block Effect" on spatial resolution in PET detectors , 2005, IEEE Transactions on Nuclear Science.

[15]  L. Adler,et al.  F-18 fluorodeoxyglucose-positron emission tomography imaging for primary breast cancer and loco-regional staging. , 2007, Radiologic clinics of North America.

[16]  Paul D. Reynolds,et al.  1 mm3 resolution breast-dedicated PET system , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[17]  C. Berman,et al.  Recent advances in breast-specific imaging. , 2007, Cancer control : journal of the Moffitt Cancer Center.

[18]  Angela Marie Klohs Foudray Design of an advanced positron emission tomography detector system and algorithms for imaging small animal models of human disease , 2009 .

[19]  L. Tafra Positron Emission Tomography (PET) and Mammography (PEM) for Breast Cancer: Importance to Surgeons , 2006, Annals of Surgical Oncology.

[20]  P. N. Trehan,et al.  X-ray and gamma-ray intensity measurements in 210Pb, 177Lu, 170Tm and 141Ce decays , 1987 .

[21]  Craig S. Levin,et al.  New Imaging Technologies to Enhance the Molecular Sensitivity of Positron Emission Tomography , 2008, Proceedings of the IEEE.

[22]  Guillem Pratx,et al.  Bayesian reconstruction of photon interaction sequences for high-resolution PET detectors , 2009, Physics in medicine and biology.

[23]  Kathy Schilling,et al.  The role of positron emission mammography in breast cancer imaging and management , 2008, Applied Radiology.

[24]  Wouter Verkerke,et al.  The RooFit Toolkit for Data Modeling , 2003 .

[25]  Sanjiv Sam Gambhir,et al.  Positron emission tomography in diagnosis and management of invasive breast cancer: current status and future perspectives. , 2003, Clinical breast cancer.

[26]  W. W. Moses,et al.  Empirical observation of resolution degradation in positron emission tomographs utilizing block detectors , 1994 .

[27]  C J Thompson,et al.  Feasibility study for positron emission mammography. , 1994, Medical physics.

[28]  Hideo Murayama,et al.  A depth of interaction detector for PET with GSO crystals doped with different amounts of Ce , 2001 .

[29]  C. Levin,et al.  Temperature and bias voltage studies of a large area position sensitive Avalanche Photodiode , 2009, 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC).

[30]  R.M. Leahy,et al.  Spatial Distortion Correction and Crystal Identification for MRI-Compatible Position-Sensitive Avalanche Photodiode-Based PET Scanners , 2009, IEEE Transactions on Nuclear Science.

[31]  Eiji Yoshida,et al.  Annihilation photon acollinearity in PET: volunteer and phantom FDG studies , 2007, Physics in medicine and biology.

[32]  Roger Lecomte,et al.  Design of a high resolution positron emission tomograph using solid state scintillation detectors , 1988 .

[33]  Paul Kinahan,et al.  Clinical imaging characteristics of the positron emission mammography PEM Flex Solo II , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[34]  Michael V. Green,et al.  Depth identification accuracy of a three layer phoswich PET detector module , 1999 .

[35]  F. Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[36]  Craig S. Levin,et al.  Design of a high-resolution and high-sensitivity scintillation crystal array for PET with nearly complete light collection , 2002 .

[37]  C. Levin,et al.  Finite element model based spatial linearity correction for scintillation detectors that use position sensitive avalanche photodiodes , 2005, IEEE Nuclear Science Symposium Conference Record, 2005.

[38]  Edward Anashkin,et al.  First test results of a commercially available clinical PET scanner using the NEMA NU 4 - 2008 small animal PET standards , 2008, 2008 IEEE Nuclear Science Symposium Conference Record.

[39]  P. Olcott,et al.  Study of the performance of a novel 1 mm resolution dual-panel PET camera design dedicated to breast cancer imaging using Monte Carlo simulation. , 2007, Medical physics.