Analytical solution of unsteady heat conduction in a two-layered material in imperfect contact subjected to a moving heat source

An analytical approach of transient heat conduction in two-layered material, of finite depth, with an imperfect thermal contact, subjected to a moving gaussian laser beam was developed. The method consists of deriving the solution of the homogeneous part of the heat equation by using the well known separation of variables method and expressing the source term in series form. The porous aspect of granular coating layer on substrate was also taken into account earlier in this modelling work. This model has been successfully applied on a practical system; laser cladding of electronic copper tracks on alumina substrates. This analytical model can be used also for estimation of the thermal contact resistance between layers.

[1]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[2]  A. Kaplan Model of the absorption variation during pulsed laser heating applied to welding of electronic Au/Ni-coated Cu-leadframes , 2005 .

[3]  Yuwen Zhang,et al.  NUMERICAL SIMULATION OF TWO-DIMENSIONAL MELTING AND RESOLIDIFICATION OF A TWO-COMPONENT METAL POWDER LAYER IN SELECTIVE LASER SINTERING PROCESS , 2004 .

[4]  Najib Laraqi,et al.  3-D numerical modeling of heat transfer between two sliding bodies: temperature and thermal contact resistance , 1999 .

[5]  Faisabilité d'une méthode d'évaluation de la résistance thermique de contact entre une lamelle céramique écrasée sur un substrat métallique , 2007 .

[6]  A. Haji-sheikh,et al.  Temperature solution in multi-dimensional multi-layer bodies , 2002 .

[7]  N. Laraqi An Exact Explicit Analytical Solution of the Steady-State Temperature in a Half Space Subjected to a Moving Circular Heat Source , 2003 .

[8]  B. Yilbas 3-dimensional laser heating model including a moving heat source consideration and phase change process , 1998 .

[9]  G. D. Davis,et al.  COMPUTATIONAL MODEL FOR SOLUTAL CONVECTION DURING DIRECTIONAL SOLIDIFICATION , 2002 .

[10]  I. Woodhead,et al.  On modelling the drying of porous materials: analytical solutions to coupled partial differential equations governing heat and moisture transfer , 2005 .

[11]  A. Bejan,et al.  Convection in Porous Media , 1992 .

[12]  P. Fauchais,et al.  A Model for Rapid Solidification for Plasma Spraying , 2007 .

[13]  Pradip Majumdar,et al.  A Green’s function model for the analysis of laser heating of materials , 2007 .

[14]  M. N. Özişik,et al.  Unified Analysis and Solutions of Heat and Mass Diffusion , 1984 .

[15]  K. Dickmann,et al.  Calculation of temperature field in a thin moving sheet heated with laser beam , 2003 .

[16]  Najib Laraqi,et al.  Diagrams for fast transient conduction in sphere and long cylinder subject to sudden and violent thermal effects on its surface , 2003 .

[17]  Y. Scudeller,et al.  Détermination expérimentale de la résistance thermique d'interface d'un dépôt métallique submicronique sur son substrat , 1995 .

[18]  E. Schlunder Heat exchanger design handbook , 1983 .

[19]  M. El Ganaoui,et al.  A 3D computational model of heat transfer coupled to phase change in multilayer materials with random thermal contact resistance , 2009 .

[20]  J. Tu,et al.  A model for estimating penetration depth of laser welding processes , 1996 .

[21]  Relevance of a thermal contact resistance depending on the solid/liquid phase change transition for sprayed composite metal/ceramic powder by direct current plasma jets , 2008 .

[22]  Sh Kang,et al.  Analytical solution for transient temperature distribution in gas tungsten arc welding with consideration of filler wire , 1999 .

[23]  H. S. Carslow,et al.  Conduction of Heat in Solids, Second Edition , 1986 .

[24]  F. D. Monte,et al.  Transient heat conduction in one-dimensional composite slab. A ‘natural’ analytic approach , 2000 .

[25]  Abderrahmane Baïri,et al.  Effect of thickness and physical properties of films on the thermal behavior of a moving rough interface , 2004 .

[26]  N. M. Tallan Electrical conductivity in ceramics and glass , 1974 .

[27]  Najib Laraqi,et al.  Theory of thermal resistance between solids with randomly sized and located contacts , 2002 .

[28]  M. E. Ganaoui,et al.  Quelques paramètres de contrôle de la convection thermocapillaire en croissance par fusion de zone en microgravité , 2004 .

[29]  Syed M. Zubair,et al.  Heat conduction in a semi-infinite solid due to time-dependent laser source , 1996 .

[30]  M. El-Adawi,et al.  Laser heating of a two-layer system with constant surface absorption: an exact solution , 1995 .

[31]  F. D. Monte,et al.  Unsteady heat conduction in two-dimensional two slab-shaped regions. Exact closed-form solution and results , 2003 .

[32]  H. Salt Transient conduction in a two-dimensional composite slab—I. Theoretical development of temperature modes , 1983 .

[33]  E. Semma,et al.  Numerical Study of Melting/Solidification by a Hybrid Method Coupling a Lattice Boltzmann and a Finite Volumes Approaches , 2009 .

[34]  G. H. Geiger,et al.  Transport Phenomena in Materials Processing , 1998 .

[35]  F. D. Monte,et al.  Transverse eigenproblem of steady-state heat conduction for multi-dimensional two-layered slabs with automatic computation of eigenvalues , 2004 .

[36]  L. Shaw,et al.  Comparisons between thermal modeling and experiments: effects of substrate preheating , 2004 .

[37]  L. Froyen,et al.  Lasers and materials in selective laser sintering , 2002 .

[38]  Yu. V. Khlopkov,et al.  Absorptance of powder materials suitable for laser sintering , 2000 .

[39]  P. Lemasson,et al.  2D-heat transfer modelling within limited regions using moving sources: application to electron beam welding , 2003 .

[40]  Shih-Chieh Lin,et al.  An analytical model for the temperature field in the laser forming of sheet metal , 2000 .

[41]  N. Saxena,et al.  Effective thermal conductivity of copper powders , 1989 .

[42]  Hamid Hadim,et al.  Handbook of Porous Media, Second Edition , 2000 .

[43]  Ian Gladwell,et al.  Boundary value problem , 2008, Scholarpedia.

[44]  R. Bennacer,et al.  On some latent heat effects on the floating zone growth , 2004 .

[45]  Najib Laraqi,et al.  SIMULTANEOUS ESTIMATION OF FRICTIONAL HEAT FLUX AND TWO THERMAL CONTACT PARAMETERS FOR SLIDING CONTACTS , 2004 .