Lie Theory for Quantum Control

One of the main theoretical challenges in quantum computing is the design of explicit schemes that enable one to effectively factorize a given final unitary operator into a product of basic unitary operators. As this is equivalent to a constructive controllability task on a Lie group of special unitary operators, one faces interesting classes of bilinear optimal control problems for which efficient numerical solution algorithms are sought for. In this paper we give a review on recent Lie-theoretical developments in finite-dimensional quantum control that play a key role for solving such factorization problems on a compact Lie group. After a brief introduction to basic terms and concepts from quantum mechanics, we address the fundamental control theoretic issues for bilinear control systems and survey standard techniques fromLie theory relevant for quantum control. Questions of controllability, accessibility and time optimal control of spin systems are in the center of our interest. Some remarks on computational aspects are included as well. The idea is to enable the potential reader to understand the problems in clear mathematical terms, to assess the current state of the art and get an overview on recent developments in quantum control-an emerging interdisciplinary field between physics, control and computation. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Navin Khaneja,et al.  Optimal experiments for maximizing coherence transfer between coupled spins. , 2005, Journal of magnetic resonance.

[2]  R. Westwick,et al.  A theorem on numerical range , 1975 .

[3]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[4]  Lawrence Markus Control dynamical systems , 2005, Mathematical systems theory.

[5]  John B. Moore,et al.  Gradient Flows Computing the C-numerical Range with Applications in NMR Spectroscopy , 2002, J. Glob. Optim..

[6]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[7]  K. Gustafson,et al.  Numerical Range: The Field Of Values Of Linear Operators And Matrices , 1996 .

[8]  C. Altafini,et al.  QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.

[9]  J. Hilgert,et al.  Lie groups, convex cones, and semigroups , 1989 .

[10]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[11]  Navin Khaneja,et al.  Cartan decomposition of SU(2n) and control of spin systems , 2001 .

[12]  Timo O. Reiss,et al.  Optimal control of spin dynamics in the presence of relaxation. , 2002, Journal of magnetic resonance.

[13]  University of Toronto,et al.  Conditions for strictly purity-decreasing quantum Markovian dynamics , 2006 .

[14]  Velimir Jurdjevic,et al.  Control systems on semi-simple Lie groups and their homogeneous spaces , 1981 .

[15]  U. Helmke,et al.  Lie algebra representations, nilpotent matrices, and the C–numerical range , 2006 .

[16]  William M. Boothby,et al.  A transitivity problem from control theory , 1975 .

[17]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[18]  Jerzy Zabczyk,et al.  Mathematical control theory - an introduction , 1992, Systems & Control: Foundations & Applications.

[19]  J. Swoboda Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.

[20]  Navin Khaneja,et al.  Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2002 .

[21]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[22]  Dionisis Stefanatos,et al.  Relaxation-optimized transfer of spin order in Ising spin chains (6 pages) , 2005 .

[23]  Relative C -numerical ranges for applications in quantum control and quantum information , 2007, math-ph/0702005.

[24]  G. Drobny,et al.  Quantum Description of High‐Resolution NMR in Liquids , 1990 .

[25]  R. Löwen,et al.  Chapter 4 Compact projective planes , 1995 .

[26]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[27]  Domenico D'Alessandro,et al.  Controllability of One Spin and Two Interacting Spins , 2003, Math. Control. Signals Syst..

[28]  E. B. Davies Quantum theory of open systems , 1976 .

[29]  Chi-Kwong Li,et al.  C-numerical ranges and C-numerical radii , 1994 .

[30]  A. Holevo Statistical structure of quantum theory , 2001 .

[31]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[32]  O. Toeplitz Das algebraische Analogon zu einem Satze von Fejér , 1918 .

[33]  Domenico D'Alessandro,et al.  The Lie algebra structure and controllability of spin systems , 2002 .

[34]  C. Lobry Controllability of Nonlinear Systems on Compact Manifolds , 1974 .

[35]  S. Helgason LIE GROUPS AND SYMMETRIC SPACES. , 1968 .

[36]  F. Silva,et al.  Controllability on classical Lie groups , 1988, Math. Control. Signals Syst..

[37]  L. Fu,et al.  Controllability of spacecraft systems in a central gravitational field , 1994, IEEE Trans. Autom. Control..

[38]  Martin Kleinsteuber,et al.  The Local C-Numerical Range: Examples, Conjectures, and Numerical Algorithms , 2006 .

[39]  D. Montgomery,et al.  Transformation Groups of Spheres , 1943 .

[40]  Nam-Kiu Tsing,et al.  The C-numerical range of matrices is star-shaped , 1996 .

[41]  V. Jurdjevic Geometric control theory , 1996 .

[42]  Uwe Helmke,et al.  The significance of the C -numerical range and the local C -numerical range in quantum control and quantum information , 2007, math-ph/0701035.

[43]  Irreducible connected Lie subgroups of Gln(R) are closed , 1977 .

[44]  Y. Poon Another proof of a result of Westwick , 1980 .

[45]  Claudio Altafini,et al.  Coherent control of open quantum dynamical systems , 2004 .

[46]  R. Brockett,et al.  Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[47]  MATRICES WITH CIRCULAR SYMMETRY ON THEIR UNITARY ORBITS AND C-NUMERICAL RANGES , 1991 .

[48]  K. Hammerer,et al.  Characterization of nonlocal gates , 2002 .

[49]  Claudio Altafini,et al.  Controllability of quantum mechanical systems by root space decomposition of su(N) , 2002 .

[50]  S. Glaser,et al.  Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy , 1998, Science.

[51]  F. Hausdorff Der Wertvorrat einer Bilinearform , 1919 .

[52]  J. Gauthier,et al.  Contrôlabilité des Systèmes Bilinéaires , 1982 .

[53]  A. I. Solomon,et al.  Controllability of Quantum Systems , 2003 .

[54]  Dionisis Stefanatos,et al.  Optimal control of coupled spins in the presence of longitudinal and transverse relaxation , 2004 .

[55]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[56]  Moshe Goldberg,et al.  Elementary inclusion relations for generalized numerical ranges , 1977 .

[57]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[58]  W. Thirring,et al.  A Geometric picture of entanglement and Bell inequalities , 2001, quant-ph/0111116.

[59]  U. Helmke,et al.  A new type of C ‐numerical range arising in quantum computing , 2006 .

[60]  V. Jurdjevic,et al.  Control systems subordinated to a group action: Accessibility , 1981 .

[61]  Time optimal factorizations on compact Lie groups , 2004 .

[62]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[63]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[64]  R. Brockett Lie Theory and Control Systems Defined on Spheres , 1973 .

[65]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[66]  Two-transitive Lie groups , 2001, math/0106108.

[67]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[68]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[69]  A. G. Butkovskii,et al.  Control of Quantum-Mechanical Processes and Systems , 1990 .

[70]  William M. Boothby,et al.  Determination of the Transitivity of Bilinear Systems , 1979 .

[71]  Helmut Völklein,et al.  Transitivitätsfragen bei linearen Liegruppen , 1981 .

[72]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[73]  Navin Khaneja,et al.  On the Stochastic Control of Quantum Ensembles , 2000 .

[74]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[75]  Uwe Helmke,et al.  Spin Dynamics: A Paradigm for Time Optimal Control on Compact Lie Groups , 2006, J. Glob. Optim..