Bayesian estimation of phase response curves

Phase response curve (PRC) of an oscillatory neuron describes the response of the neuron to external perturbation. The PRC is useful to predict synchronized dynamics of neurons; hence, its measurement from experimental data attracts increasing interest in neural science. This paper introduces a Bayesian method for estimating PRCs from data, which allows for the correlation of errors in explanatory and response variables of the PRC. The method is implemented with a replica exchange Monte Carlo technique; this avoids local minima and enables efficient calculation of posterior averages. A test with artificial data generated by the noisy Morris-Lecar equation shows that the proposed method outperforms conventional regression that ignores errors in the explanatory variable. Experimental data from the pyramidal cells in the rat motor cortex is also analyzed with the method; a case is found where the result with the proposed method is considerably different from that obtained by conventional regression.

[1]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[2]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[3]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[4]  Raymond J. Carroll,et al.  Measurement error in nonlinear models: a modern perspective , 2006 .

[5]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[6]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[7]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[8]  D. Hall Measurement Error in Nonlinear Models: A Modern Perspective , 2008 .

[9]  Sudhir Gupta,et al.  Statistical Regression With Measurement Error , 1999, Technometrics.

[10]  Bard Ermentrout,et al.  Type I Membranes, Phase Resetting Curves, and Synchrony , 1996, Neural Computation.

[11]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..

[12]  A. Winfree The geometry of biological time , 1991 .

[13]  Charles J. Wilson,et al.  Response properties and synchronization of rhythmically firing dendritic neurons. , 2007, Journal of neurophysiology.

[14]  G. Ermentrout,et al.  Phase transition and other phenomena in chains of coupled oscilators , 1990 .

[15]  G Bard Ermentrout,et al.  Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. , 2005, Physical review letters.

[16]  Alexander Kukush,et al.  Measurement Error Models , 2011, International Encyclopedia of Statistical Science.

[17]  G. Kitagawa Smoothness priors analysis of time series , 1996 .

[18]  Ajay Jasra,et al.  On population-based simulation for static inference , 2007, Stat. Comput..

[19]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Juan P. Torres,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[21]  Corey D. Acker,et al.  Synchronization in hybrid neuronal networks of the hippocampal formation. , 2005, Journal of neurophysiology.

[22]  G Bard Ermentrout,et al.  Relating neural dynamics to neural coding. , 2007, Physical review letters.

[23]  Robert J Butera,et al.  Neuronal oscillators in aplysia californica that demonstrate weak coupling in vitro. , 2005, Physical review letters.

[24]  Andrew W. Roddam,et al.  Measurement Error in Nonlinear Models: a Modern Perspective , 2008 .

[25]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[26]  A. Reyes,et al.  Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex , 2007, The European journal of neuroscience.

[27]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[28]  Germán Mato,et al.  Synchrony in Excitatory Neural Networks , 1995, Neural Computation.

[29]  Keisuke Ota,et al.  Statistical estimation algorithm for phase response curves , 2006 .

[30]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[31]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[32]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[33]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[34]  A. Satorra,et al.  Measurement Error Models , 1988 .

[35]  Toshio Aoyagi,et al.  Weighted spike-triggered average of a fluctuating stimulus yielding the phase response curve. , 2008, Physical review letters.

[36]  Hirotugu Akaike,et al.  Likelihood and the Bayes procedure , 1980 .

[37]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[38]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[39]  G. Ermentrout,et al.  Phase-response curves give the responses of neurons to transient inputs. , 2005, Journal of neurophysiology.

[40]  David Saunders,et al.  Phase resetting and coupling of noisy neural oscillators , 2006, Journal of Computational Neuroscience.

[41]  D. Titterington Common structure of smoothing techniques in statistics , 1985 .

[42]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[43]  Yukito Iba EXTENDED ENSEMBLE MONTE CARLO , 2001 .

[44]  Scott M. Berry,et al.  Bayesian Smoothing and Regression Splines for Measurement Error Problems , 2002 .

[45]  S. Amari,et al.  Information geometry of estimating functions in semi-parametric statistical models , 1997 .

[46]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[47]  Keisuke Ota,et al.  MAP estimation algorithm for phase response curves based on analysis of the observation process , 2008, Journal of Computational Neuroscience.

[48]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[49]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[50]  Irving John Good,et al.  The Estimation of Probabilities: An Essay on Modern Bayesian Methods , 1965 .

[51]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[52]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .