The Gaussian wave packets transform for the semi-classical Schr\"odinger equation with vector potentials

In this paper, we reformulate the semi-classical Schr\"odinger equation in the presence of electromagnetic field by the Gaussian wave packets transform. With this approach, the highly oscillatory Schr\"odinger equation is equivalently transformed into another Schr\"odinger type wave equation, the $w$ equation, which is essentially not oscillatory and thus requires much less computational effort. We propose two numerical methods to solve the $w$ equation, where the Hamiltonian is either divided into the kinetic, the potential and the convection part, or into the kinetic and the potential-convection part. The convection, or the potential-convection part is treated by a semi-Lagrangian method, while the kinetic part is solved by the Fourier spectral method. The numerical methods are proved to be unconditionally stable, spectrally accurate in space and second order accurate in time, and in principle they can be extended to higher order schemes in time. Various one dimensional and multidimensional numerical tests are provided to justify the properties of the proposed methods.

[1]  R. Leighton,et al.  The Feynman Lectures on Physics; Vol. I , 1965 .

[2]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[3]  E. Heller Time‐dependent approach to semiclassical dynamics , 1975 .

[4]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[5]  B. Simon,et al.  Schrödinger operators with magnetic fields. I. general interactions , 1978 .

[6]  G. Hagedorn Semiclassical quantum mechanics , 1980 .

[7]  B. Simon,et al.  Schrödinger operators with magnetic fields , 1981 .

[8]  G. Hagedorn Semiclassical quantum mechanics. III. The large order asymptotics and more general states , 1981 .

[9]  M. Popov A new method of computation of wave fields using Gaussian beams , 1982 .

[10]  G. Hagedorn Semiclassical quantum mechanics, IV : large order asymptotics and more general states in more than one dimension , 1985 .

[11]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[12]  E. Süli,et al.  A spectral method of characteristics for hyperbolic problems , 1991 .

[13]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[14]  P. Markowich,et al.  A Wigner‐function approach to (semi)classical limits: Electrons in a periodic potential , 1994 .

[15]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[16]  P. Markowich,et al.  Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .

[17]  G. Hagedorn Raising and Lowering Operators for Semiclassical Wave Packets , 1998 .

[18]  Peter A. Markowich,et al.  Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit , 1999, Numerische Mathematik.

[19]  S. Chin,et al.  Fourth order gradient symplectic integrator methods for solving the time-dependent Schrödinger equation , 2000, physics/0012017.

[20]  S. Chin,et al.  Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials , 2002, nucl-th/0203008.

[21]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[22]  H. Spohn,et al.  Space-adiabatic perturbation theory , 2002, math-ph/0201055.

[23]  B. Engquist,et al.  Computational high frequency wave propagation , 2003, Acta Numerica.

[24]  Shi Jin,et al.  Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner , 2003 .

[25]  G. Panati,et al.  Propagation of Wigner Functions for the Schrödinger Equation with a Perturbed Periodic Potential , 2004, math-ph/0403037.

[26]  Leslie Greengard,et al.  Accelerating the Nonuniform Fast Fourier Transform , 2004, SIAM Rev..

[27]  C. Lubich,et al.  A Poisson Integrator for Gaussian Wavepacket Dynamics , 2006 .

[28]  Vasile Gradinaru,et al.  Strang Splitting for the Time-Dependent Schrödinger Equation on Sparse Grids , 2007, SIAM J. Numer. Anal..

[29]  N. Tanushev Superpositions and higher order Gaussian beams , 2008 .

[30]  Shi Jin,et al.  Gaussian beam methods for the Schrodinger equation in the semi-classical regime: Lagrangian and Eulerian formulations , 2008 .

[31]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[32]  Jianliang Qian,et al.  Eulerian Gaussian beams for Schrödinger equations in the semi-classical regime , 2009, J. Comput. Phys..

[33]  Erwan Faou,et al.  Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..

[34]  Mechthild Thalhammer,et al.  High-order time-splitting Hermite and Fourier spectral methods , 2009, J. Comput. Phys..

[35]  Lexing Ying,et al.  Fast Gaussian wavepacket transforms and Gaussian beams for the Schrödinger equation , 2010, J. Comput. Phys..

[36]  J. Pasciak Spectral and pseudospectral methods for advection equations , 1980 .

[37]  G. Hagedorn,et al.  Tunneling dynamics and spawning with adaptive semiclassical wave packets , 2010 .

[38]  Jianfeng Lu,et al.  Convergence of frozen Gaussian approximation for high‐frequency wave propagation , 2010 .

[39]  Christof Sparber,et al.  Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.

[40]  Shi Jin,et al.  Semi-Eulerian and High Order Gaussian Beam Methods for the Schrodinger Equation in the Semiclassical Regime ∗ , 2011 .

[41]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[42]  Zhennan Zhou,et al.  A semi-Lagrangian time splitting method for the Schrödinger equation with vector potentials , 2013, Commun. Inf. Syst..

[43]  Charalampos Skokos,et al.  High Order Three Part Split Symplectic Integration Schemes , 2013, ArXiv.

[44]  Giovanni Russo,et al.  The Gaussian wave packet transform: Efficient computation of the semi-classical limit of the Schrödinger equation. Part 1 - Formulation and the one dimensional case , 2013, J. Comput. Phys..

[45]  M. Bonitz,et al.  Quantum Hydrodynamics , 2013, 1310.0283.

[46]  Shi Jin,et al.  Gaussian beam methods for the Schrödinger equation with discontinuous potentials , 2014, J. Comput. Appl. Math..

[47]  March,et al.  Gaussian beams and the propagation of singularities , 2014 .

[48]  Zhennan Zhou,et al.  Numerical approximation of the Schrödinger equation with the electromagnetic field by the Hagedorn wave packets , 2014, J. Comput. Phys..

[49]  George A. Hagedorn,et al.  Convergence of a semiclassical wavepacket based time-splitting for the Schrödinger equation , 2014, Numerische Mathematik.

[50]  Giovanni Russo,et al.  The Gaussian wave packet transform: Efficient computation of the semi-classical limit of the Schrödinger equation. Part 2. Multidimensional case , 2014, J. Comput. Phys..

[51]  Jianfeng Lu,et al.  Improved sampling and validation of frozen Gaussian approximation with surface hopping algorithm for nonadiabatic dynamics. , 2016, The Journal of chemical physics.

[52]  Jian-Guo Liu,et al.  On a Schrödinger-Landau-Lifshitz System: Variational Structure and Numerical Methods , 2016, Multiscale Model. Simul..

[53]  Yong Zhang,et al.  An improved semi-Lagrangian time splitting spectral method for the semi-classical Schrdinger equation with vector potentials using NUFFT , 2017 .

[54]  Jianfeng Lu,et al.  Frozen Gaussian approximation with surface hopping for mixed quantum-classical dynamics: A mathematical justification of fewest switches surface hopping algorithms , 2016, Math. Comput..

[55]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.