Quantifying Aggregated Uncertainty in Plasmodium falciparum Malaria Prevalence and Populations at Risk via Efficient Space-Time Geostatistical Joint Simulation

Risk maps estimating the spatial distribution of infectious diseases are required to guide public health policy from local to global scales. The advent of model-based geostatistics (MBG) has allowed these maps to be generated in a formal statistical framework, providing robust metrics of map uncertainty that enhances their utility for decision-makers. In many settings, decision-makers require spatially aggregated measures over large regions such as the mean prevalence within a country or administrative region, or national populations living under different levels of risk. Existing MBG mapping approaches provide suitable metrics of local uncertainty—the fidelity of predictions at each mapped pixel—but have not been adapted for measuring uncertainty over large areas, due largely to a series of fundamental computational constraints. Here the authors present a new efficient approximating algorithm that can generate for the first time the necessary joint simulation of prevalence values across the very large prediction spaces needed for global scale mapping. This new approach is implemented in conjunction with an established model for P. falciparum allowing robust estimates of mean prevalence at any specified level of spatial aggregation. The model is used to provide estimates of national populations at risk under three policy-relevant prevalence thresholds, along with accompanying model-based measures of uncertainty. By overcoming previously unchallenged computational barriers, this study illustrates how MBG approaches, already at the forefront of infectious disease mapping, can be extended to provide large-scale aggregate measures appropriate for decision-makers.

[1]  P. Martens,et al.  Climate change and future populations at risk of malaria , 1999 .

[2]  P Vounatsou,et al.  Malaria mapping using transmission models: application to survey data from Mali. , 2006, American journal of epidemiology.

[3]  R. Snow,et al.  The need for maps of transmission intensity to guide malaria control in Africa , 1996 .

[4]  Pierre Goovaerts,et al.  Geostatistical modelling of uncertainty in soil science , 2001 .

[5]  Andrew T. A. Wood,et al.  Algorithm AS 312: An Algorithm for Simulating Stationary Gaussian Random Fields , 1997 .

[6]  Tigran Nikoghosyan,et al.  United Nations Children’s Fund (UNICEF) , 2018, Yearbook of International Cooperation on Environment and Development 1998–99.

[7]  Julien Langou,et al.  A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures , 2007, Parallel Comput..

[8]  David L. Smith,et al.  Measuring malaria for elimination , 2009 .

[9]  P J Diggle,et al.  Spatial modelling and the prediction of Loa loa risk: decision making under uncertainty , 2007, Annals of tropical medicine and parasitology.

[10]  J. Dushoff,et al.  The entomological inoculation rate and Plasmodium falciparum infection in African children , 2005, Nature.

[11]  R. Cibulskis,et al.  Estimating trends in the burden of malaria at country level. , 2007, The American journal of tropical medicine and hygiene.

[12]  Thomas A. Smith,et al.  Mapping malaria risk in West Africa using a Bayesian nonparametric non-stationary model , 2009, Comput. Stat. Data Anal..

[13]  M. Tanner,et al.  Spatial risk prediction and mapping of Schistosoma mansoni infections among schoolchildren living in western Côte d'Ivoire , 2005, Parasitology.

[14]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[15]  David L Smith,et al.  Measuring malaria endemicity from intense to interrupted transmission , 2008, The Lancet. Infectious diseases.

[16]  Armin Gemperli,et al.  Mapping malaria transmission in West and Central Africa , 2006, Tropical medicine & international health : TM & IH.

[17]  Peter M Atkinson,et al.  Developing geostatistical space-time models to predict outpatient treatment burdens from incomplete national data. , 2008, Geographical analysis.

[18]  M. Stein Space–Time Covariance Functions , 2005 .

[19]  B. A. Eckstein Evalution of spline and weighted average interpolation algorithms , 1989 .

[20]  M. Tanner,et al.  An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm coinfection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Andrew J Tatem,et al.  Correction: A World Malaria Map: Plasmodium falciparum Endemicity in 2007 , 2009, PLoS Medicine.

[22]  N. Best,et al.  Spatial risk assessment of Rift Valley fever in Senegal. , 2007, Vector borne and zoonotic diseases.

[23]  M. Taylor,et al.  A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales , 2008 .

[24]  R Moyeed,et al.  Bayesian geostatistical prediction of the intensity of infection with Schistosoma mansoni in East Africa , 2006, Parasitology.

[25]  L Gosoniu,et al.  Bayesian modelling of geostatistical malaria risk data. , 2006, Geospatial health.

[26]  Simon I Hay,et al.  Defining the relationship between Plasmodium falciparum parasite rate and clinical disease: statistical models for disease burden estimation , 2009, Malaria Journal.

[27]  S. Hay,et al.  International Funding for Malaria Control in Relation to Populations at Risk of Stable Plasmodium falciparum Transmission , 2008, PLoS medicine.

[28]  P. Diggle,et al.  Childhood malaria in the Gambia: a case-study in model-based geostatistics. , 2002 .

[29]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[30]  Weltgesundheitsorganisation World malaria report , 2005 .

[31]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[32]  Michael L. Stein,et al.  Fast and Exact Simulation of Fractional Brownian Surfaces , 2002 .

[33]  Peter M Atkinson,et al.  Improving Imperfect Data from Health Management Information Systems in Africa Using Space–Time Geostatistics , 2006, PLoS medicine.

[34]  Eberhard Parlow,et al.  Bayesian spatial risk prediction of Schistosoma mansoni infection in western Côte d'Ivoire using a remotely-sensed digital elevation model. , 2007, The American journal of tropical medicine and hygiene.

[35]  Simon I. Hay,et al.  Predicting changing malaria risk after expanded insecticide-treated net coverage in Africa , 2009, Trends in parasitology.

[36]  C. Deutsch,et al.  DSSIM-HR: a FORTRAN 90 program for direct sequential simulation with histogram reproduction , 2003 .

[37]  David L. Smith,et al.  A World Malaria Map: Plasmodium falciparum Endemicity in 2007 , 2009, PLoS medicine.

[38]  C. R. Dietrich,et al.  A fast and exact method for multidimensional gaussian stochastic simulations , 1993 .

[39]  David L Smith,et al.  Endemicity response timelines for Plasmodium falciparum elimination , 2009, Malaria Journal.

[40]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[41]  A. Tatem,et al.  The Limits and Intensity of Plasmodium falciparum Transmission : Implications for Malaria Control and Elimination Worldwide , 2007 .

[42]  C. R. Dietrich,et al.  A Simple and Efficient Space Domain Implementation of the Turning Bands Method , 1995 .

[43]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[44]  A. Mantoglou,et al.  The Turning Bands Method for simulation of random fields using line generation by a spectral method , 1982 .

[45]  Andrew J Tatem,et al.  The global distribution and population at risk of malaria: past, present, and future. , 2004, The Lancet. Infectious diseases.

[46]  Noel Cressie,et al.  Conditional-mean least-squares fitting of Gaussian Markov random fields to Gaussian fields , 2008, Comput. Stat. Data Anal..

[47]  S. Hay,et al.  The global distribution of clinical episodes of Plasmodium falciparum malaria , 2005, Nature.

[48]  Simon Brooker,et al.  Spatial heterogeneity of parasite co-infection: Determinants and geostatistical prediction at regional scales , 2009, International journal for parasitology.

[49]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[50]  S I Hay,et al.  Determining global population distribution: methods, applications and data. , 2006, Advances in parasitology.

[51]  M. W. Davis,et al.  Production of conditional simulations via the LU triangular decomposition of the covariance matrix , 1987, Mathematical Geology.

[52]  S. Hay,et al.  The Malaria Atlas Project: Developing Global Maps of Malaria Risk , 2006, PLoS medicine.

[53]  David L Smith,et al.  Revisiting the Basic Reproductive Number for Malaria and Its Implications for Malaria Control , 2007, PLoS biology.

[54]  Simon I Hay,et al.  Spatial prediction of Plasmodium falciparum prevalence in Somalia , 2008, Malaria Journal.

[55]  Global Mapping of Infectious Diseases: Methods, Examples, and Emerging Applications , 2007, Emerging Infectious Diseases.

[56]  T. Gneiting,et al.  Fast and Exact Simulation of Large Gaussian Lattice Systems in ℝ2: Exploring the Limits , 2006 .