Photonic crystal intermediate reflectors for micromorph solar cells: a comparative study.

Wave-optics analysis is performed to investigate the benefits of utilizing Bragg-reflectors and inverted ZnO opals as intermediate reflectors in micromorph cells. The Bragg-reflector and the inverted ZnO opal intermediate reflector increase the current generated in a 100 nm thick upper a-Si:H cell within a micromorph cell by as much as 20% and 13%, respectively. The current generated in the bottom muc-Si:H cell within the micromorph is also greater when the Bragg-reflector is used as the intermediate reflector. The Bragg-reflector outperforms the ZnO inverted opal because it has a larger stop-gap, is optically thin, and due to greater absorption losses that occur in the opaline intermediate reflectors.

[1]  L. E. Scriven,et al.  Opaline Photonic Crystals: How Does Self‐Assembly Work? , 2004 .

[2]  P. Buehlmann,et al.  In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells , 2007 .

[3]  Robert P. H. Chang,et al.  Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition , 2005 .

[4]  Carsten Rockstuhl,et al.  Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells. , 2009, Optics express.

[5]  A. Shah,et al.  Intrinsic microcrystalline silicon (/spl mu/c-Si:H)-a promising new thin film solar cell material , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[6]  N. Kherani,et al.  Enhanced Photoconductivity in Thin‐Film Semiconductors Optically Coupled to Photonic Crystals , 2007 .

[7]  G. L. Araújo,et al.  Limiting efficiencies for photovoltaic energy conversion in multigap systems , 1996 .

[8]  Arvind Shah,et al.  Thin-film silicon solar cells: A review and selected trends , 1995 .

[9]  D. Aspnes,et al.  Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry , 1979 .

[10]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[11]  Carsten Rockstuhl,et al.  3D photonic crystal intermediate reflector for micromorph thin‐film tandem solar cell , 2008 .

[12]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[13]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[14]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[15]  P. Zanzucchi,et al.  Optical and photoconductive properties of discharge‐produced amorphous silicon , 1977 .

[16]  Stefan Enoch,et al.  Structural Colors in Nature and Butterfly-Wing Modeling , 2003 .

[17]  D. Whittaker,et al.  Scattering-matrix treatment of patterned multilayer photonic structures , 1999 .

[18]  Edvige Celasco,et al.  Synthesis, characterization and modelling of silicon based opals , 2006 .

[19]  M. P. D. Santos,et al.  Characterization of ZnO films prepared by dc reactive magnetron sputtering at different oxygen partial pressures , 1995 .

[20]  G. Ozin,et al.  Tailoring the Electrical Properties of Inverse Silicon Opals ‐ A Step Towards Optically Amplified Silicon Solar Cells , 2009, Advanced materials.

[21]  Arvind Shah,et al.  Towards Very Low-Cost Mass Production of Thin-film Silicon Photovoltaic (PV) Solar Modules on Glass , 2006 .

[22]  D. Golmayo,et al.  ZnO Inverse Opals by Chemical Vapor Deposition , 2005 .

[23]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[24]  K. Lim,et al.  A Simple Optical Properties Modeling of Microcrystalline Silicon for the Energy Conversion Application by the Effective Medium Approximation Method , 1997 .

[25]  G. Ozin,et al.  Silicon Photovoltaics Using Conducting Photonic Crystal Back‐Reflectors , 2008 .

[26]  Lucio Claudio Andreani,et al.  Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media , 2008 .