Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion

[1]  Chuankun Jia,et al.  Fabrication of plate-like MnO2 with excellent cycle stability for supercapacitor electrodes , 2018, Electrochimica Acta.

[2]  G. Meng,et al.  Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures , 2018, Progress in Materials Science.

[3]  Y. Bando,et al.  The Role of Geometric Sites in 2D Materials for Energy Storage , 2018, Joule.

[4]  Hongli Zhu,et al.  Ion Transport Nanotube Assembled with Vertically Aligned Metallic MoS2 for High Rate Lithium‐Ion Batteries , 2018 .

[5]  Joonsuk Park,et al.  High performance low-temperature solid oxide fuel cells with atomic layer deposited-yttria stabilized zirconia embedded thin film electrolyte , 2018 .

[6]  Shuhui Sun,et al.  Advanced Phosphorus‐Based Materials for Lithium/Sodium‐Ion Batteries: Recent Developments and Future Perspectives , 2018 .

[7]  Lin Xu,et al.  One-Dimensional Hetero-Nanostructures for Rechargeable Batteries. , 2018, Accounts of chemical research.

[8]  Junxia Wang,et al.  Synthesis of ordered Ni/NiO nanocables for electrochemical capacitor application , 2018, Journal of Nanoparticle Research.

[9]  S. Evans,et al.  Confined Assembly of Hollow Carbon Spheres in Carbonaceous Nanotube: A Spheres-in-Tube Carbon Nanostructure with Hierarchical Porosity for High-Performance Supercapacitor. , 2018, Small.

[10]  I. Jung,et al.  Bimetallic junction mediated synthesis of multilayer graphene edges towards ultrahigh capacity for lithium ion batteries. , 2018, Nanoscale.

[11]  Ning Chen,et al.  Litchi-like porous Fe/N/C spheres with atomically dispersed FeNx promoted by sulfur as highly efficient oxygen electrocatalysts for Zn–air batteries , 2018 .

[12]  P. He,et al.  Three-Dimensional Honeycomb-Structural LiAlO2-Modified LiMnPO4 Composite with Superior High Rate Capability as Li-Ion Battery Cathodes. , 2018, ACS applied materials & interfaces.

[13]  Jun Zhou,et al.  Electrokinetic Supercapacitor for Simultaneous Harvesting and Storage of Mechanical Energy. , 2018, ACS Applied Materials and Interfaces.

[14]  Huaping Zhao,et al.  Evaluating the Role of Nanostructured Current Collectors in Energy Storage Capability of Supercapacitor Electrodes with Thick Electroactive Materials Layers , 2018 .

[15]  Boyang Liu,et al.  Hierarchically Porous, Ultrathick, “Breathable” Wood‐Derived Cathode for Lithium‐Oxygen Batteries , 2018 .

[16]  Ruopian Fang,et al.  More Reliable Lithium‐Sulfur Batteries: Status, Solutions and Prospects , 2017, Advanced materials.

[17]  Qiang Zhang,et al.  Review on High‐Loading and High‐Energy Lithium–Sulfur Batteries , 2017 .

[18]  S. Knights,et al.  3D Porous Fe/N/C Spherical Nanostructures As High-Performance Electrocatalysts for Oxygen Reduction in Both Alkaline and Acidic Media. , 2017, ACS applied materials & interfaces.

[19]  Bin Chen,et al.  Flexible Zn– and Li–air batteries: recent advances, challenges, and future perspectives , 2017 .

[20]  G. Rubloff,et al.  High performance asymmetric V2O5-SnO2 nanopore battery by atomic layer deposition. , 2017, Nanoscale.

[21]  Gaixia Zhang,et al.  Synthesis of hierarchical platinum-palladium-copper nanodendrites for efficient methanol oxidation , 2017 .

[22]  L. Johnson,et al.  A rechargeable lithium–oxygen battery with dual mediators stabilizing the carbon cathode , 2017, Nature Energy.

[23]  Gaixia Zhang,et al.  Crack-tips enriched platinum-copper superlattice nanoflakes as highly efficient anode electrocatalysts for direct methanol fuel cells. , 2017, Nanoscale.

[24]  Huaping Zhao,et al.  Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells , 2017, Nano Research.

[25]  S. Cha,et al.  Integrated design of a Ni thin-film electrode on a porous alumina template for affordable and high-performance low-temperature solid oxide fuel cells , 2017 .

[26]  R. Dedryvère,et al.  Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries , 2017 .

[27]  Yong‐Mook Kang,et al.  Investigation of Promising Air Electrode for Realizing Ultimate Lithium Oxygen Battery , 2017 .

[28]  Liaoyong Wen,et al.  Multiple nanostructures based on anodized aluminium oxide templates. , 2017, Nature nanotechnology.

[29]  Ruopian Fang,et al.  A Sulfur‐Rich Copolymer@CNT Hybrid Cathode with Dual‐Confinement of Polysulfides for High‐Performance Lithium–Sulfur Batteries , 2017, Advanced materials.

[30]  T. Zhao,et al.  Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries , 2017 .

[31]  R. Chandra,et al.  An efficient α-MnO2 nanorods forests electrode for electrochemical capacitors with neutral aqueous electrolytes , 2016 .

[32]  Xinhua Xu,et al.  Solid polymer electrolyte coating three-dimensional Sn/Ni bimetallic nanotube arrays for high performance lithium-ion battery anodes , 2016 .

[33]  Chang Liu,et al.  Hierarchically porous Fe-N-doped carbon nanotubes as efficient electrocatalyst for oxygen reduction , 2016 .

[34]  Gaixia Zhang,et al.  Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells? , 2016 .

[35]  Yu Zhu,et al.  A universal surface enhanced Raman spectroscopy (SERS)-active graphene cathode for lithium–air batteries , 2016 .

[36]  C. Zhi,et al.  Multifunctional Energy Storage and Conversion Devices , 2016, Advanced materials.

[37]  Bruce Dunn,et al.  Multidimensional materials and device architectures for future hybrid energy storage , 2016, Nature Communications.

[38]  M. Mohamedi,et al.  Highly-ordered microporous carbon nanospheres: a promising anode for high-performance sodium-ion batteries , 2016 .

[39]  Xueliang Sun,et al.  Sodium‐Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective , 2016, Advanced materials.

[40]  Michael Holzinger,et al.  Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations , 2016 .

[41]  Linda F. Nazar,et al.  Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes , 2016, Nature Energy.

[42]  S. Acharya,et al.  Conducting Polymers for Pseudocapacitive Energy Storage , 2016 .

[43]  Z. Fan,et al.  Three-dimensional nanotube electrode arrays for hierarchical tubular structured high-performance pseudocapacitors. , 2016, Nanoscale.

[44]  Forrest S. Gittleson,et al.  A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning. , 2016, Nano letters.

[45]  Haifeng Zhang,et al.  Controllable fabrication of ordered Pt nanorod array as catalytic electrode for passive direct methanol fuel cells , 2016 .

[46]  Eleanor I. Gillette,et al.  Dual-template ordered mesoporous carbon/Fe2O3 nanowires as lithium-ion battery anodes. , 2016, Nanoscale.

[47]  I. Thomann,et al.  Ultrathin AAO Membrane as a Generic Template for Sub-100 nm Nanostructure Fabrication , 2016 .

[48]  Young Beom Kim,et al.  A thermally self-sustaining solid oxide fuel cell system at ultra-low operating temperature (319 °C) , 2016 .

[49]  Chengzhong Yu,et al.  Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density , 2016, Scientific Reports.

[50]  Zonghai Chen,et al.  Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. , 2016, Nano letters.

[51]  O. Lavrova,et al.  Demonstration of 99% capacity retention in Li/S batteries with a porous hollow carbon cap nanofiber–graphene structure through a semi-empirical capacity fading model , 2016 .

[52]  Xueliang Sun,et al.  From Lithium‐Oxygen to Lithium‐Air Batteries: Challenges and Opportunities , 2016 .

[53]  Jeffrey W. Fergus,et al.  Solid Oxide Fuel Cells : Materials Properties and Performance , 2016 .

[54]  Chunmei Li,et al.  Sodium-Oxygen Battery: Steps Toward Reality. , 2016, The journal of physical chemistry letters.

[55]  Forrest S. Gittleson,et al.  Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces , 2016, Advanced materials.

[56]  Yan Yu,et al.  Sodium‐Ion Batteries: High Power–High Energy Sodium Battery Based on Threefold Interpenetrating Network (Adv. Mater. 12/2016) , 2016, Advanced materials.

[57]  C. Xiong,et al.  High Capacity Lithium Ion Battery Anodes Using Sn Nanowires Encapsulated Al2O3 Tubes in Carbon Matrix , 2016 .

[58]  Chang Liu,et al.  High Reversible Lithium Storage Capacity and Structural Changes of Fe2O3 Nanoparticles Confined inside Carbon Nanotubes , 2016 .

[59]  Gymama Slaughter,et al.  Fabrication of palladium nanowire array electrode for biofuel cell application , 2016 .

[60]  Guang Yang,et al.  Fabrication of Cu@MxOy (M = Cu, Mn, Co, Fe) Nanocable Arrays for Lithium‐Ion Batteries with Long Cycle Lives and High Rate Capabilities , 2015 .

[61]  J. Son,et al.  Synthesis of Hollow Nanorods of SiO2 Anode Material by AAO Template Synthesis Method for Lithium Ion Battery. , 2015, Journal of nanoscience and nanotechnology.

[62]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[63]  Eleanor I. Gillette,et al.  Dual-template synthesis of ordered mesoporous carbon/Fe2O3 nanowires: high porosity and structural stability for supercapacitors , 2015 .

[64]  Yong Lei,et al.  Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries , 2015 .

[65]  B. Wei,et al.  Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage , 2015, Science Advances.

[66]  Hongsen Li,et al.  Three-dimensionally ordered porous TiNb2O7 nanotubes: a superior anode material for next generation hybrid supercapacitors , 2015 .

[67]  D. Wilkinson,et al.  A review of cathode materials and structures for rechargeable lithium–air batteries , 2015 .

[68]  H. Shu,et al.  Porous hollow α-Fe2O3@TiO2 core–shell nanospheres for superior lithium/sodium storage capability , 2015 .

[69]  Huaping Zhao,et al.  Highly Ordered Three-Dimensional Ni-TiO2 Nanoarrays as Sodium Ion Battery Anodes , 2015 .

[70]  P. S. Venkateswaran,et al.  Fabrication of Vertically aligned Copper Nanotubes as a Novel Electrode for Enzymatic Biofuel Cells , 2015 .

[71]  Ashutosh K. Singh,et al.  Engineering of high performance supercapacitor electrode based on Fe-Ni/Fe2O3-NiO core/shell hybrid nanostructures , 2015 .

[72]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[73]  Soo-Jin Park,et al.  Optimization of Carbon‐ and Binder‐Free Au Nanoparticle‐Coated Ni Nanowire Electrodes for Lithium‐Oxygen Batteries , 2015 .

[74]  Weifeng Zhang,et al.  A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode , 2015, Nanoscale Research Letters.

[75]  Huaping Zhao,et al.  Self‐Supported Metallic Nanopore Arrays with Highly Oriented Nanoporous Structures as Ideally Nanostructured Electrodes for Supercapacitor Applications , 2014, Advanced materials.

[76]  Sang Bok Lee,et al.  An all-in-one nanopore battery array. , 2014, Nature nanotechnology.

[77]  Y. Lei,et al.  A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO 2 , 2014 .

[78]  W. Lee,et al.  Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. , 2014, Chemical reviews.

[79]  K. Amine,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[80]  X. Lou,et al.  Iron‐Oxide‐Based Advanced Anode Materials for Lithium‐Ion Batteries , 2014 .

[81]  Q. Wang,et al.  Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities , 2014 .

[82]  Yong Lei,et al.  Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors , 2014 .

[83]  Sheng Liu,et al.  Inorganic nanostructured materials for high performance electrochemical supercapacitors. , 2014, Nanoscale.

[84]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[85]  Wook Ki Jung,et al.  Encapsulated Monoclinic Sulfur for Stable Cycling of Li–S Rechargeable Batteries , 2013, Advanced materials.

[86]  S. T. Picraux,et al.  Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. , 2013, Nano letters.

[87]  Liangbing Hu,et al.  Electrodeposited three-dimensional Ni-Si nanocable arrays as high performance anodes for lithium ion batteries. , 2013, Nanoscale.

[88]  Dmitri Golberg,et al.  Multi-walled carbon nanotube papers as binder-free cathodes for large capacity and reversible non-aqueous Li–O2 batteries , 2013 .

[89]  Tao Zhang,et al.  Ru/ITO: a carbon-free cathode for nonaqueous Li-O2 battery. , 2013, Nano letters.

[90]  Deren Yang,et al.  Electrochemical synthesis of SnCo alloy shells on orderly rod-shaped Cu current collectors as anode materials for lithium-ion batteries with enhanced performance , 2013 .

[91]  J. Yi,et al.  Three-dimensional aligned mesoporous carbon nanotubes filled with Co3O4 nanoparticles for Li-ion battery anode applications , 2013 .

[92]  P. Su,et al.  Combinatorial deposition of a dense nano-thin film YSZ electrolyte for low temperature solid oxide fuel cells , 2013 .

[93]  Y. Meng,et al.  Three-dimensional nanocable arrays with a copper core and cupric oxide shell for high power lithium ion batteries , 2013 .

[94]  Abdullah M. Asiri,et al.  Synthesis of porous tubular C/MoS2 nanocomposites and their application as a novel electrode material for supercapacitors with excellent cycling stability , 2013 .

[95]  W. Goddard,et al.  Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. , 2013, Journal of the American Chemical Society.

[96]  Dusan Losic,et al.  Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications , 2013 .

[97]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[98]  Jason W. Zack,et al.  Oxygen Reduction Activity of Vapor-Grown Platinum Nanotubes , 2013 .

[99]  Abdullah M. Asiri,et al.  WS2 nanoparticles–encapsulated amorphous carbon tubes: A novel electrode material for supercapacitors with a high rate capability , 2013 .

[100]  H. Shu,et al.  Spherical concentration-gradient LiMn1.87Ni0.13O4 spinel as a high performance cathode for lithium ion batteries , 2013 .

[101]  Guangyuan Zheng,et al.  Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. , 2013, Nano letters.

[102]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[103]  D. Zhao,et al.  Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. , 2013, Journal of the American Chemical Society.

[104]  Stefan A Freunberger,et al.  The carbon electrode in nonaqueous Li-O2 cells. , 2013, Journal of the American Chemical Society.

[105]  Jiangtian Li,et al.  Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. , 2013, Nanoscale.

[106]  Yujuan Xie,et al.  High capacitance properties of electrodeposited PANI-Ag nanocable arrays , 2012 .

[107]  Jian Jiang,et al.  Recent Advances in Metal Oxide‐based Electrode Architecture Design for Electrochemical Energy Storage , 2012, Advanced materials.

[108]  Feng Li,et al.  A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries , 2012 .

[109]  Li Liu,et al.  Synthesis and characterization of a Li-rich layered cathode material Li1.15[(Mn1/3Ni1/3Co1/3)0.5(Ni1/4Mn3/4)0.5]0.85O2 with spherical core–shell structure , 2012 .

[110]  Ji-won Son,et al.  The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes , 2012 .

[111]  Xianyou Wang,et al.  The effects of crystal structure of the precursor MnO2 on electrochemical properties of spinel LiMn2O4 , 2012, Journal of Solid State Electrochemistry.

[112]  P. Bruce,et al.  Ordered mesoporous metal oxides: synthesis and applications. , 2012, Chemical Society reviews.

[113]  Chang Liu,et al.  Improved electrochemical performance of Fe2O3 nanoparticles confined in carbon nanotubes , 2012 .

[114]  Deren Yang,et al.  Cu–Si1−xGex core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries , 2012 .

[115]  Chenglong Zhao,et al.  Coaxial carbon–silicon–carbon nanotube arrays in porous anodic aluminum oxide templates as anodes for lithium ion batteries , 2012 .

[116]  Shuhong Yu,et al.  Surface Composition and Lattice Ordering-Controlled Activity and Durability of CuPt Electrocatalysts for Oxygen Reduction Reaction , 2012 .

[117]  Deren Yang,et al.  Nanostructured hybrid cobalt oxide/copper electrodes of lithium-ion batteries with reversible high-rate capabilities , 2012 .

[118]  Zhiyu Wang,et al.  Metal Oxide Hollow Nanostructures for Lithium‐ion Batteries , 2012, Advanced materials.

[119]  H. Shu,et al.  Determination of the chemical diffusion coefficient of lithium ions in spherical Li[Ni0.5Mn0.3Co0.2]O2 , 2012 .

[120]  G. Rubloff,et al.  Nanoengineering strategies for metal-insulator-metal electrostatic nanocapacitors. , 2012, ACS Nano.

[121]  Ran Liu,et al.  Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays. , 2012, Physical chemistry chemical physics : PCCP.

[122]  Yung-Cheng Lee,et al.  Three-dimensional Ni/TiO2 nanowire network for high areal capacity lithium ion microbattery applications. , 2012, Nano letters.

[123]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[124]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[125]  Meilin Liu,et al.  Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives , 2011 .

[126]  Y. Bando,et al.  Coaxial Cu-Si@C array electrodes for high-performance lithium ion batteries. , 2011, Chemical communications.

[127]  Chunsheng Wang,et al.  Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. , 2011, Nano letters.

[128]  Yi Cui,et al.  Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. , 2011, Nano letters.

[129]  Juan Xu,et al.  Electrochemical capacitance of nickel oxide nanotubes synthesized in anodic aluminum oxide templates , 2011 .

[130]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[131]  Juan Herranz,et al.  Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. , 2011, Nature communications.

[132]  Duncan Graham,et al.  Oxygen reactions in a non-aqueous Li+ electrolyte. , 2011, Angewandte Chemie.

[133]  H. Duan,et al.  Synthesis and rate performance of Fe 3O 4-based Cu nanostructured electrodes for Li ion batteries , 2011 .

[134]  Haoshen Zhou,et al.  Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. , 2011, ACS nano.

[135]  Ki-Bum Kim,et al.  High‐Performance Micro‐Solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates , 2011 .

[136]  J. Schroers,et al.  Bulk metallic glass nanowire architecture for electrochemical applications. , 2011, ACS nano.

[137]  H. Ahn,et al.  Highly ordered mesoporous NiO anode material for lithium ion batteries with an excellent electrochemical performance , 2011 .

[138]  Juan Xu,et al.  Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material , 2010 .

[139]  Y. Chiang Building a Better Battery , 2010, Science.

[140]  Woo-Sung Lee,et al.  Highly ordered porous alumina with tailor-made pore structures fabricated by pulse anodization , 2010, Nanotechnology.

[141]  H. Teng,et al.  Effects of Carbon Nanotube Grafting on the Performance of Electric Double Layer Capacitors , 2010 .

[142]  G. Meng,et al.  Branched Silicon Nanotubes and Metal Nanowires via AAO‐Template‐Assistant Approach , 2010 .

[143]  Chang Liu,et al.  Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. , 2010, Chemical communications.

[144]  K. Sundmacher Fuel Cell Engineering: Toward the Design of Efficient Electrochemical Power Plants , 2010 .

[145]  Ben Wang,et al.  Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes , 2010 .

[146]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[147]  G. Yushin,et al.  Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space. , 2010, Journal of the American Chemical Society.

[148]  Peng Zhang,et al.  Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries , 2010 .

[149]  H. Low,et al.  Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography. , 2010, ACS nano.

[150]  Wu Xu,et al.  Optimization of Air Electrode for Li/Air Batteries , 2010 .

[151]  H. Xing,et al.  Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization , 2010 .

[152]  P. Ajayan,et al.  Multisegmented Au-MnO2/Carbon Nanotube Hybrid Coaxial Arrays for High-Power Supercapacitor Applications , 2010 .

[153]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[154]  Yong Wang,et al.  One-dimensional SnO2 nanostructures: facile morphology tuning and lithium storage properties , 2009, Nanotechnology.

[155]  Yong Wang,et al.  Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage , 2009 .

[156]  Dusan Losic,et al.  Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization. , 2009, Small.

[157]  Ping He,et al.  Preparation of mesocellular carbon foam and its application for lithium/oxygen battery , 2009 .

[158]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[159]  W. J. Stępniowski,et al.  Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures , 2009 .

[160]  Sang Bok Lee,et al.  Nanotubular metal-insulator-metal capacitor arrays for energy storage. , 2009, Nature nanotechnology.

[161]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[162]  Frédéric Jaouen,et al.  Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells , 2009, Science.

[163]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[164]  Haoshen Zhou,et al.  Mesoporous Carbon Nanofibers for Supercapacitor Application , 2009 .

[165]  M. Ouyang,et al.  Self-ordered, controlled structure nanoporous membranes using constant current anodization. , 2008, Nano letters.

[166]  Jae-Hun Kim,et al.  Electrochemical characterization of vertical arrays of tin nanowires grown on silicon substrates as anode materials for lithium rechargeable microbatteries , 2008 .

[167]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[168]  H. Duan,et al.  Fabrication and characterization of Fe3O4-based Cu nanostructured electrode for Li-ion battery , 2008 .

[169]  Shuangyin Wang,et al.  Pd/Pt core–shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells , 2008 .

[170]  H. Ahn,et al.  Honeycomb pattern array of vertically standing core-shell nanorods : Its application to Li energy electrodes , 2008 .

[171]  Jae‐Hun Kim,et al.  Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries , 2008 .

[172]  T. Chikyow,et al.  Evolution of standing mesochannels on porous anodic alumina substrates with designed conical holes. , 2008, Journal of the American Chemical Society.

[173]  Hu-lin Li,et al.  Preparation of polyaniline nanowire arrayed electrodes for electrochemical supercapacitors , 2008 .

[174]  Martin Steinhart,et al.  Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. , 2008, Nature nanotechnology.

[175]  Z. Wen,et al.  Template Synthesis of Aligned Carbon Nanotube Arrays using Glucose as a Carbon Source: Pt Decoration of Inner and Outer Nanotube Surfaces for Fuel‐Cell Catalysts , 2008 .

[176]  Yong‐Mook Kang,et al.  The Effect of Morphological Modification on the Electrochemical Properties of SnO2 Nanomaterials , 2008 .

[177]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[178]  Jing Liang,et al.  Template-Directed Materials for Rechargeable Lithium-Ion Batteries† , 2008 .

[179]  S. Jiang,et al.  Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells , 2007 .

[180]  Justin D. Holmes,et al.  Mesoporous Titania Nanotubes: Their Preparation and Application as Electrode Materials for Rechargeable Lithium Batteries , 2007 .

[181]  M. Steinhart,et al.  Tree-like alumina nanopores generated in a non-steady-state anodization , 2007 .

[182]  Weiping Cai,et al.  Highly ordered nanostructures with tunable size, shape and properties : A new way to surface nano-patterning using ultra-thin alumina masks , 2007 .

[183]  S. Jiang,et al.  Pd nanowire arrays as electrocatalysts for ethanol electrooxidation , 2007 .

[184]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[185]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[186]  Cailing Xu,et al.  Template preparation of Pt-Ru and Pt nanowire array electrodes on a Ti/Si substrate for methanol electro-oxidation , 2006 .

[187]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[188]  Huakun Liu,et al.  Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries , 2006 .

[189]  T. Veres,et al.  New application of AAO template: a mold for nanoring and nanocone arrays. , 2006, Journal of the American Chemical Society.

[190]  Atsuo Yasumori,et al.  Large-Scale Fabrication of Ordered Nanoporous Alumina Films with Arbitrary Pore Intervals by Critical-Potential Anodization , 2006 .

[191]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[192]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[193]  T. Seong,et al.  Electrochemical capacitors fabricated with carbon nanotubes grown within the pores of anodized aluminum oxide templates , 2006 .

[194]  Pierre-Louis Taberna,et al.  Modification of Al Current Collector/Active Material Interface for Power Improvement of Electrochemical Capacitor Electrodes , 2006 .

[195]  Yong Wang,et al.  Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers , 2006 .

[196]  F. Prinz,et al.  Thin-Film Solid Oxide Fuel Cells on Porous Nickel Substrates with Multistage Nanohole Array , 2006 .

[197]  F. Prinz,et al.  Thin-Film SOFCs Using Gastight YSZ Thin Films on Nanoporous Substrates , 2006 .

[198]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[199]  S. Rahman,et al.  Porous Nanoparticle Membranes: Synthesis and Application as Fuel‐Cell Catalysts , 2005 .

[200]  T. Seong,et al.  Fabrication of high-density arrays of individually isolated nanocapacitors using anodic aluminum oxide templates and carbon nanotubes , 2005 .

[201]  Weijiang Zhou,et al.  Multisegment PtRu Nanorods: Electrocatalysts with Adjustable Bimetallic Pair Sites , 2005 .

[202]  B. Liu,et al.  Template synthesis and characterization of WO3/TiO2 composite nanotubes , 2005 .

[203]  Jun Chen,et al.  Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8 Co0.2 O2 nanotubes as the cathode materials of lithium ion batteries. , 2005, The journal of physical chemistry. B.

[204]  Yong Wang,et al.  Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application , 2005 .

[205]  F. Béguin,et al.  Electrochemical energy storage in ordered porous carbon materials , 2005 .

[206]  N. Pan,et al.  High power density supercapacitors using locally aligned carbon nanotube electrodes , 2005 .

[207]  Li Wan,et al.  Tin/Platinum Bimetallic Nanotube Array and its Electrocatalytic Activity for Methanol Oxidation , 2005 .

[208]  P. J. Sebastian,et al.  Sol-gel template synthesis of highly ordered MnO2 nanowire arrays , 2005 .

[209]  Oh-Shim Joo,et al.  EDLC characteristics of CNTs grown on nanoporous alumina templates , 2004 .

[210]  Weijiang Zhou,et al.  Template Preparation of Multisegment PtNi Nanorods as Methanol Electro-Oxidation Catalysts with Adjustable Bimetallic Pair Sites , 2004 .

[211]  Wen Xu,et al.  Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors , 2004 .

[212]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[213]  Kun-Hong Lee,et al.  Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes , 2004 .

[214]  J. Tirado Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects , 2003 .

[215]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[216]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .

[217]  Juhyoun Kwak,et al.  Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles , 2001, Nature.

[218]  L. Carrette,et al.  Fuel Cells - Fundamentals and Applications , 2001 .

[219]  T. Tamamura,et al.  Square and Triangular Nanohole Array Architectures in Anodic Alumina , 2001 .

[220]  Xu,et al.  Electronic transport in Y-junction carbon nanotubes , 2000, Physical review letters.

[221]  Martin Moskovits,et al.  Template-grown high-density nanocapacitor arrays , 2000 .

[222]  C. Papadopoulos,et al.  Nanoelectronics: Growing Y-junction carbon nanotubes , 1999, Nature.

[223]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[224]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[225]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[226]  G. Thompson,et al.  Porous anodic alumina: fabrication, characterization and applications , 1997 .

[227]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[228]  T. M. Grace,et al.  Kinetic study of sulfate reduction with carbon , 1983 .

[229]  G. Thompson,et al.  Porous anodic film formation on aluminium , 1981, Nature.

[230]  T. C. Downie,et al.  Anodic oxide films on aluminum , 1969 .

[231]  A. Manthiram,et al.  Nanostructured Host Materials for Trapping Sulfur in Rechargeable Li–S Batteries: Structure Design and Interfacial Chemistry , 2018 .

[232]  S. Chou,et al.  Clean, efficient and affordable energy for a sustainable future , 2017 .

[233]  In‐Yup Jeon,et al.  Controlled Fabrication of Hierarchically Structured Nitrogen‐Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst , 2017 .

[234]  Jou-Hyeon Ahn,et al.  A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode , 2016 .

[235]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.

[236]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[237]  Jin-Woo Park,et al.  Sodium Polysulfides during Charge/Discharge of the Room-Temperature Na/S Battery Using TEGDME Electrolyte , 2016 .

[238]  John B. Goodenough,et al.  Electrochemical energy storage in a sustainable modern society , 2014 .

[239]  Deren Yang,et al.  Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries , 2012 .

[240]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[241]  Xing Hu,et al.  Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization. , 2010, Chemical Communications.

[242]  Sharon L. Blair,et al.  High-Capacity Lithium–Air Cathodes , 2009 .

[243]  Robert Vajtai,et al.  Controlled fabrication of hierarchically branched nanopores, nanotubes, and nanowires. , 2005, Proceedings of the National Academy of Sciences of the United States of America.