Pareto optimal allocations and optimal risk sharing for quasiconvex risk measures

The main goal of this paper is to generalize the characterization of Pareto optimal allocations known for convex risk measures (see, among others, Jouini et al., in Math Financ 18(2):269–292, 2008 and Filipovic and Kupper, in Int J Theor Appl Financ, 11:325–343, 2008) to the wider class of quasiconvex risk measures. Following the approach of Jouini et al., in Math Financ 18(2):269–292, 2008 for convex risk measures, in the quasiconvex case we provide sufficient conditions for allocations to be (weakly) Pareto optimal in terms of exactness of the so-called quasiconvex inf-convolution as well as an existence result for weakly Pareto optimal allocations. Moreover, we give a necessary condition for weakly optimal risk sharing that is also sufficient under cash-additivity of at least one between the risk measures.

[1]  J. Penot Are Generalized Derivatives Sseful for Generalized Convex Functions , 1998 .

[2]  J. Penot,et al.  Characterization of Solution Sets of Quasiconvex Programs , 2003 .

[3]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[4]  J. Martínez-Legaz,et al.  Generalized Convexity, Generalized Monotonicity: Recent Results , 2011 .

[5]  Michael Kupper,et al.  Risk Preferences and their Robust Representation , 2010, Math. Oper. Res..

[6]  Gregor Svindland,et al.  Comonotone Pareto optimal allocations for law invariant robust utilities on L1 , 2014, Finance Stochastics.

[7]  Martin Schweizer Dynamic utility indierence valuation via convex risk measures , 2005 .

[8]  M. Volle Duality for the level sum of quasiconvex functions and applications , 1998 .

[9]  Beatrice Acciaio Optimal risk sharing with non-monotone monetary functionals , 2007, Finance Stochastics.

[10]  Damir Filipović,et al.  EQUILIBRIUM PRICES FOR MONETARY UTILITY FUNCTIONS , 2008 .

[11]  Jean-Paul Penot,et al.  On Quasi-Convex Duality , 1990, Math. Oper. Res..

[12]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[13]  E. Jouini,et al.  OPTIMAL RISK SHARING FOR LAW INVARIANT MONETARY UTILITY FUNCTIONS , 2008 .

[14]  William S. Jewell,et al.  Optimal Risk Exchanges , 1979, ASTIN Bulletin.

[15]  C. Zălinescu,et al.  Elements of quasiconvex subdifferential calculus. , 2000 .

[16]  M. Volle,et al.  Levels Sets Infimal Convolution and Level Addition , 1997 .

[17]  L. Montrucchio,et al.  RISK MEASURES: RATIONALITY AND DIVERSIFICATION , 2010 .

[18]  M. Volle,et al.  On a convolution operation obtained by adding level sets : classical and new results , 1995 .

[19]  Philipp J. Schönbucher,et al.  Advances in Finance and Stochastics , 2002 .

[20]  N. El Karoui,et al.  Pricing, Hedging and Optimally Designing Derivatives via Minimization of Risk Measures , 2007, 0708.0948.

[21]  A. Chateauneuf,et al.  Optimal risk-sharing rules and equilibria with Choquet-expected-utility , 2000 .

[22]  K. Borch Equilibrium in a Reinsurance Market , 1962 .

[23]  H. Gerber,et al.  On convex principles of premium calculation , 1985 .

[24]  Massimo Marinacci,et al.  Complete Monotone Quasiconcave Duality , 2011, Math. Oper. Res..

[25]  Marco Frittelli,et al.  Dual Representation of Quasi-convex Conditional Maps , 2011, SIAM J. Financial Math..

[26]  F. Delbaen Coherent Risk Measures on General Probability Spaces , 2002 .

[27]  Abdelkader Elqortobi INF-convolution quasi-convexe des fonctionnelles positives , 1992 .

[28]  Alexander Schied,et al.  Robust Preferences and Convex Measures of Risk , 2002 .

[29]  Susanne Klöppel,et al.  DYNAMIC INDIFFERENCE VALUATION VIA CONVEX RISK MEASURES , 2007 .

[30]  Pauline Barrieu,et al.  Inf-convolution of risk measures and optimal risk transfer , 2005, Finance Stochastics.