Graphene and Poly(3,4-ethylenedioxythiophene)–Polystyrene Sulfonate Hybrid Nanostructures for Input/Output Bioelectronics

[1]  David K. Piech,et al.  Translational opportunities and challenges of invasive electrodes for neural interfaces , 2023, Nature Biomedical Engineering.

[2]  Raghav Garg,et al.  Graphene nanostructures for input-output bioelectronics. , 2021, Biophysics reviews.

[3]  C. Bettinger,et al.  Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine , 2021, Advanced materials.

[4]  S. Shen,et al.  Thermal Transport in Multidimensional Silicon-Graphene Hybrid Nanostructures. , 2021, ACS Applied Materials and Interfaces.

[5]  X. Cui,et al.  3D fuzzy graphene microelectrode array for dopamine sensing at sub-cellular spatial resolution. , 2021, Biosensors & bioelectronics.

[6]  Z. Xiong,et al.  Close-Packed PEDOT:PSS-Coated Graphene Microelectrodes for High-Resolution Interrogation of Neural Activity , 2021, IEEE Transactions on Electron Devices.

[7]  G. Malliaras,et al.  Achieving long-term stability of thin-film electrodes for neurostimulation. , 2021, Acta biomaterialia.

[8]  Menahem Y. Rotenberg,et al.  Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces , 2020, Nature Nanotechnology.

[9]  D. San Roman,et al.  Bioelectronics with graphene nanostructures , 2020 .

[10]  Luciano Fadiga,et al.  Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics , 2020, Nature protocols.

[11]  L. Fadiga,et al.  Scaling of capacitance of PEDOT:PSS: volume vs. area , 2020, Journal of Materials Chemistry C.

[12]  Tzahi Cohen-Karni,et al.  Characterization of the Coupling between Out‐of‐Plane Graphene and Electrogenic Cells , 2020, Advanced Materials Interfaces.

[13]  F. Bezanilla,et al.  Remote nongenetic optical modulation of neuronal activity using fuzzy graphene , 2020, Proceedings of the National Academy of Sciences.

[14]  S. Cogan,et al.  High-charge-capacity sputtered iridium oxide neural stimulation electrodes deposited using water vapor as a reactive plasma constituent. , 2020, Journal of biomedical materials research. Part B, Applied biomaterials.

[15]  A. Feinberg,et al.  Three-dimensional fuzzy graphene ultra-microelectrodes for subcellular electrical recordings , 2020, Nano Research.

[16]  Brendan B. Murphy,et al.  Fabrication of Ti3C2 MXene Microelectrode Arrays for In Vivo Neural Recording. , 2020, Journal of visualized experiments : JoVE.

[17]  V. Ananikov Organic–Inorganic Hybrid Nanomaterials , 2019, Nanomaterials.

[18]  B. Shim,et al.  Durable soft neural micro-electrode coating by an electrochemical synthesis of PEDOT:PSS / graphene oxide composites , 2019, Electrochimica Acta.

[19]  H. Hafiz,et al.  Electron transport in multi-dimensional fuzzy graphene nanostructures. , 2019, Nano letters.

[20]  H. Hafiz,et al.  Engineering Three-Dimensional (3D) Out-of-Plane Graphene Edge Sites for Highly Selective Two-Electron Oxygen Reduction Electrocatalysis , 2019, 1904.04946.

[21]  Juan Carlos Fraile Marinero,et al.  A Measurement Setup and Automated Calculation Method to Determine the Charge Injection Capacity of Implantable Microelectrodes , 2018, Sensors.

[22]  Tzahi Cohen-Karni,et al.  Bioelectronics with nanocarbons. , 2018, Journal of materials chemistry. B.

[23]  Virginia Woods,et al.  Long-term recording reliability of liquid crystal polymer µECoG arrays , 2018, Journal of neural engineering.

[24]  Phil M. Smith,et al.  Surface Engineering of a LiMn2O4 Electrode Using Nanoscale Polymer Thin Films via Chemical Vapor Deposition Polymerization. , 2018, ACS applied materials & interfaces.

[25]  R. McLeod,et al.  Subthreshold Operation of Organic Electrochemical Transistors for Biosignal Amplification , 2018, Advanced science.

[26]  Guruprasad Raghavan,et al.  Graphene Microelectrode Arrays for Electrical and Optical Measurements of Human Stem Cell-Derived Cardiomyocytes , 2018, Cellular and Molecular Bioengineering.

[27]  Sydney S. Cash,et al.  Development and Translation of PEDOT:PSS Microelectrodes for Intraoperative Monitoring , 2018 .

[28]  Ashlyn T. Young,et al.  Neuro‐Nano Interfaces: Utilizing Nano‐Coatings and Nanoparticles to Enable Next‐Generation Electrophysiological Recording, Neural Stimulation, and Biochemical Modulation , 2018, Advanced functional materials.

[29]  Zhenqiang Ma,et al.  Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. , 2018, ACS nano.

[30]  X. Cui,et al.  Recent Advances in Neural Electrode-Tissue Interfaces. , 2017, Current opinion in biomedical engineering.

[31]  Vikash Gilja,et al.  Scaling Effects on the Electrochemical Stimulation Performance of Au, Pt, and PEDOT:PSS Electrocorticography Arrays , 2017 .

[32]  V. Meunier,et al.  Nanowire-Mesh-Templated Growth of Out-of-Plane Three-Dimensional Fuzzy Graphene. , 2017, ACS nano.

[33]  Karl Deisseroth,et al.  Next-generation probes, particles, and proteins for neural interfacing , 2017, Science Advances.

[34]  Eric M Hudak,et al.  Electron transfer processes occurring on platinum neural stimulating electrodes: calculated charge-storage capacities are inaccessible during applied stimulation , 2017, Journal of neural engineering.

[35]  X. Crispin,et al.  Article type : Full Paper Understanding the capacitance of PEDOT : PSS , 2017 .

[36]  David C. Martin,et al.  Enhanced PEDOT adhesion on solid substrates with electrografted P(EDOT-NH2) , 2017, Science Advances.

[37]  Duygu Kuzum,et al.  Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing , 2016, Scientific Reports.

[38]  J. L. Polo,et al.  An electrochemical impedance study of anomalous diffusion in PEDOT-coated carbon microfiber electrodes for neural applications , 2016 .

[39]  Kyung Jin Seo,et al.  Bioresorbable Silicon Electronics for Transient Spatio-temporal Mapping of Electrical Activity from the Cerebral Cortex , 2016, Nature materials.

[40]  Anish A. Sarma,et al.  Clinical translation of a high-performance neural prosthesis , 2015, Nature Medicine.

[41]  Yun Lu,et al.  Capacitance performances of supramolecular hydrogels based on conducting polymers , 2015, Chinese Journal of Polymer Science.

[42]  Chuen-Lin Tien,et al.  Unraveling the Enhanced Electrical Conductivity of PEDOT:PSS Thin Films for ITO-Free Organic Photovoltaics , 2014, IEEE Photonics Journal.

[43]  Michael W. Reimann,et al.  A Biophysically Detailed Model of Neocortical Local Field Potentials Predicts the Critical Role of Active Membrane Currents , 2013, Neuron.

[44]  Jan M. Rabaey,et al.  Physical principles for scalable neural recording , 2013, Front. Comput. Neurosci..

[45]  M. Spira,et al.  Multi-electrode array technologies for neuroscience and cardiology. , 2013, Nature nanotechnology.

[46]  C. Koch,et al.  The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes , 2012, Nature Reviews Neuroscience.

[47]  Daryl R Kipke,et al.  Theoretical analysis of intracortical microelectrode recordings , 2011, Journal of neural engineering.

[48]  A. Lisowska-Oleksiak,et al.  Ex situ XANES, XPS and Raman studies of poly(3,4-ethylenedioxythiophene) modified by iron hexacyanoferrate , 2010 .

[49]  Charles M Lieber,et al.  Graphene and nanowire transistors for cellular interfaces and electrical recording. , 2010, Nano letters.

[50]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[51]  G. Wallace,et al.  Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. , 2008, Biomaterials.

[52]  S. Cogan Neural stimulation and recording electrodes. , 2008, Annual review of biomedical engineering.

[53]  B. Bean The action potential in mammalian central neurons , 2007, Nature Reviews Neuroscience.

[54]  Andreas Hierlemann,et al.  Impedance characterization and modeling of electrodes for biomedical applications , 2005, IEEE Transactions on Biomedical Engineering.

[55]  Ursula van Rienen,et al.  Choosing electrodes for deep brain stimulation experiments–electrochemical considerations , 2005, Journal of Neuroscience Methods.

[56]  Stuart F Cogan,et al.  Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation , 2004, Journal of Neuroscience Methods.

[57]  A. Benabid,et al.  Deep brain stimulation , 2004, Cell and Tissue Research.

[58]  David C. Martin,et al.  Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays , 2003 .

[59]  J. Hetke,et al.  Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. , 2001, Journal of biomedical materials research.

[60]  P. Achermann,et al.  Low-frequency (<1Hz) oscillations in the human sleep electroencephalogram , 1997, Neuroscience.

[61]  F. A. Posey,et al.  Theory of Potentiostatic and Galvanostatic Charging of the Double Layer in Porous Electrodes , 1966 .

[62]  Yizhou Zhang,et al.  MXene improves the stability and electrochemical performance of electropolymerized PEDOT films , 2020 .