A Growth and Yield Model for Predicting Both Forest Stumpage and Mill Side Manufactured Product Yields and Economics

This paper presents and illustrates the application of a growth and yield model that supports both forest and mill side volume and value estimates. Traditional forest stand growth and yield models represent the forest landowner view of yield and economics. Predicted yields are estimates of what one would expect from a procurement cruise, and current stumpage prices are applied to investigate optimum management strategies. Optimum management regimes and rotation ages obtained from the forest side view are unlikely to be economically optimal when viewed from the mill side. The actual distribution of recoverable manufactured product and its value are highly dependent on mill technologies and configurations. Overcoming this limitation of growth and yield computer models necessitates the ability to predict and price the expected manufactured distribution of lumber, lineal meters of veneer, and tonnes of air dried pulp fiber yield. With these embedded models, users of the yield simulator can evaluate the economics of possible/feasible management regimes from both the forest and mill business sides. The simulator is a forest side model that has been modified to produce estimates of manufactured product yields by embedding models for 1) pulpwood chip size class distribution and pulp yield for any kappa number (Schultz and Matney, 2002), 2) a lumber yield and pricing model based on the Best Opening Face model developed by the USDA Forest Service Forest Products Laboratory (Lewis, 1985a and Lewis, 1985b), and 3) a lineal meter veneer model derived from peeler block tests. While the model is strictly applicable to planted loblolly pine (Pinus taeda L.) on cutover site-prepared land in the United States (US) Gulf South, the model and computer program are adaptable to any region and forest type.