Quantitative relationship between rheology and morphology in emulsions

Calculations based on the Grmela et al. model [M. Grmela, M. Bousmina, and J. F. Palierne, Rheol. Acta 40, 560 (2001)] for the simple case of ellipsoidal droplet-type morphology express a direct quantitative relationship between flow and microstructure both in the steady and transient regimes. The results of calculations show that in shear, elongational, and planar hyperbolic flow it is possible to extract the morphology (the deformation and the orientation of the droplet) from rheological material functions and, conversely, rheological material functions can be obtained from in situ morphological observation.

[1]  J. Mewis,et al.  Transient stresses in immiscible model polymer blends during start-up flows , 2001 .

[2]  Albert Einstein,et al.  Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁ [AdP 34, 591 (1911)] , 2005, Annalen der Physik.

[3]  Francesco Greco,et al.  Drop shape under slow steady shear flow and during relaxation. Experimental results and comparison with theory , 2001 .

[4]  J. Mewis,et al.  Rheology and rheological morphology determination in immiscible two-phase polymer model blends , 2000 .

[5]  Rosario E. S. Bretas,et al.  Rheology of polymer blends: non-linear model for viscoelastic emulsions undergoing high deformation flows , 2001 .

[6]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[7]  Takao Ohta,et al.  Dynamics and rheology of complex interfaces. I , 1991 .

[8]  G. G. Peters,et al.  Constitutive modeling of dispersive mixtures , 2001 .

[9]  Geoffrey Ingram Taylor,et al.  The Viscosity of a Fluid Containing Small Drops of Another Fluid , 1932 .

[10]  Geoffrey Ingram Taylor,et al.  The formation of emulsions in definable fields of flow , 1934 .

[11]  C. L. Tucker,et al.  Microstructural evolution in polymer blends , 2003 .

[12]  R. Larson,et al.  A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends , 2000 .

[13]  M. Bousmina,et al.  On the rheology of immiscible blends , 2001 .

[14]  J. Mewis,et al.  Relationship between rheology and morphology of model blends in steady shear flow , 1996 .

[15]  A. Ramazani,et al.  VOLUME PRESERVING RHEOLOGICAL MODELS FOR POLYMER MELTS AND SOLUTIONS USING THE GENERIC FORMALISM , 1999 .

[16]  G. Buonocore,et al.  Viscous behavior and mixing rules for an immiscible model polymer blend , 2000 .

[17]  M. Dressler,et al.  Rheological models with microstructural constraints , 2003 .

[18]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[19]  Hans Christian Öttinger,et al.  Generalized Doi–Ohta model for multiphase flow developed via generic , 1999 .

[20]  Wei-Chung Yu,et al.  Modeling of oscillatory shear flow of emulsions under small and large deformation fields , 2002 .

[21]  M. Bousmina Rheology of polymer blends: linear model for viscoelastic emulsions , 1999 .

[22]  M. Grmela,et al.  Rheology of inhomogeneous immiscible blends , 1998 .

[23]  W. R. Schowalter,et al.  Rheological properties of nondilute suspensions of deformable particles , 1975 .

[24]  O. Park,et al.  Rheology and dynamics of immiscible polymer blends , 1994 .

[25]  Pier Luca Maffettone,et al.  Equation of change for ellipsoidal drops in viscous flow , 1998 .

[26]  J. Mellema,et al.  Effective viscosity of dispersions approached by a statistical continuum method , 1983 .

[27]  J. Palierne Linear rheology of viscoelastic emulsions with interfacial tension , 1990 .

[28]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[29]  A. I. Leonov Nonequilibrium thermodynamics and rheology of viscoelastic polymer media , 1976 .