Solar Distillation

There is an important need for clean, pure drinking water in many developing countries. Often water sources are brackish (i.e. contain dissolved salts) and/or contain harmful bacteria and therefore cannot be used for drinking. In addition, there are many coastal locations where seawater is abundant but potable water is not available. Pure water is also useful for batteries and in hospitals or schools.

[1]  P. I. Cooper,et al.  Digital simulation of transient solar still processes , 1969 .

[2]  S. T. Ahmed,et al.  Study of single-effect solar still with an internal condenser , 1988 .

[3]  Shobhana Singh,et al.  Analytical expression for thermal efficiency of a passive solar still , 1991 .

[4]  G. N. Tiwari,et al.  Performance of solar still with intermittent flow of waste hot water in the basin , 1985 .

[5]  G. Tiwari,et al.  Simple multiple wick solar still: Analysis and performance , 1981 .

[6]  P. I. Cooper,et al.  Digital simulation of experimental solar still data , 1973 .

[7]  Rajendra Singh Adhikari,et al.  Estimation of mass‐transfer rates in solar stills , 1990 .

[8]  R. Satava,et al.  Innovative technologies , 2000, Surgical Endoscopy.

[9]  G. Tiwari,et al.  Estimation of convective mass transfer in solar distillation systems , 1996 .

[10]  Shruti Aggarwal,et al.  A new design for a double-condensing chamber solar still , 1997 .

[11]  H. S. Kwatra,et al.  Performance of a solar still: Predicted effect of enhanced evaporation area on yield and evaporation temperature , 1996 .

[12]  T. A. Lawand,et al.  Extended study of a simplified mathematical model for predicting the nocturnal output of a solar still , 1973 .

[13]  Tanongkiat Kiatsiriroat,et al.  Transient simulation of vertical solar still , 1987 .

[14]  Ernani Sartori ON THE NOCTURNAL PRODUCTION OF A CONVENTIONAL SOLAR STILL USING SOLAR PRE-HEATED WATER , 1988 .

[15]  G. N. Tiwari,et al.  Solar Energy: Fundamentals, Design, Modelling and Applications , 2002 .

[16]  Tanongkiat Kiatsiriroat,et al.  Prediction of mass transfer rates in solar stills , 1986 .

[17]  Norberto Chargoy,et al.  Multi-stage, indirectly heated solar still , 1990 .

[18]  G. N. Tiwari,et al.  Performance evaluation of an active solar distillation system , 1996 .

[19]  G. N. Tiwari,et al.  THERMAL MODELLING OF CONCENTRATOR ASSISTED SOLAR DISTILLATION WITH WATER FLOW OVER THE GLASS COVER , 1996 .

[20]  G. N. Tiwari,et al.  Optimization of number of effects for higher yield from an inverted absorber solar still using the Runge-Kutta method , 1998 .

[21]  H. N. Singh,et al.  Present status of solar distillation , 2003 .

[22]  G. N. Tiwari,et al.  Annual performance of an active solar distillation system , 2000 .

[23]  G. N. Tiwari,et al.  Economic analyses of various designs of conventional solar stills , 1986 .

[24]  S. Purohit,et al.  Water, life and pollution , 1990 .

[25]  Gholamreza Karimi,et al.  Mathematical modelling of solar stills in Iran , 1995 .

[26]  E. Delyannis,et al.  Historic background of desalination and renewable energies , 2003 .

[27]  Abdullah M. Al-Turki,et al.  Experimental investigation on concentrator-assisted solar-stills , 1992 .

[28]  G. M. Zaki,et al.  Analysis of roof type solar stills with assisting external condensers , 1995 .

[29]  S. C. Mullick,et al.  Estimation of Heat-Transfer Coefficients, the Upward Heat Flow, and Evaporation in a Solar Still , 1991 .

[30]  M. Farid,et al.  New development in the theory of heat and mass transfer in solar stills , 1995 .

[31]  S. O. Onyegegbu,et al.  Nocturnal distillation in basin-type solar stills , 1986 .