Ozone sensing study of sprayed β-In2S3 thin films

[1]  Tong Zhang,et al.  Selective ppb-level ozone gas sensor based on hierarchical branch-like In2O3 nanostructure , 2021 .

[2]  Xuejun Fan,et al.  Recent advances in 2D/nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives , 2020, Journal of Materials Chemistry A.

[3]  A. Labidi,et al.  Highly sensitive nitrogen dioxide gas sensors based on sprayed β-In2S3 film , 2020 .

[4]  M. Debliquy,et al.  High response to sub-ppm level of NO2 with 50%RH of ZnO sensor obtained by an auto-combustion method , 2020, Journal of Materials Science: Materials in Electronics.

[5]  A. Labidi,et al.  Thickness effect on VOC sensing properties of sprayed In2S3 films , 2020, RSC advances.

[6]  Debojyoti Nath,et al.  X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study , 2020 .

[7]  M. Kumar,et al.  Indium sulfide based metal-semiconductor-metal ultraviolet-visible photodetector , 2019, Sensors and Actuators A: Physical.

[8]  Kai Xu,et al.  Conductometric ozone sensor based on mesoporous ultrafine Co3O4 nanobricks , 2019, Sensors and Actuators B: Chemical.

[9]  F. Annanouch,et al.  Hydrodynamic evaluation of gas testing chamber: Simulation, experiment , 2019, Sensors and Actuators B: Chemical.

[10]  E. Longo,et al.  Highly selective ozone gas sensor based on nanocrystalline Zn0.95Co0.05O thin film obtained via spray pyrolysis technique , 2019, Applied Surface Science.

[11]  M. Bendahan,et al.  Skin alcohol perspiration measurements using MOX sensors , 2019, Sensors and Actuators B: Chemical.

[12]  Fengbao Zhang,et al.  Hierarchical photocatalyst of In2S3 on exfoliated MoS2 nanosheets for enhanced visible-light-driven Aza-Henry reaction , 2018, Applied Catalysis B: Environmental.

[13]  Wojciech Maziarz,et al.  V2O5 Thin Films as Nitrogen Dioxide Sensors , 2018, Sensors.

[14]  Yongcai Guo,et al.  UV light activated NO2gas sensing based on Au nanoparticles decorated few-layer MoS2thin film at room temperature , 2018, Applied Physics Letters.

[15]  A. Labidi,et al.  Ethanol sensing properties of sprayed β-In2S3 thin films , 2018 .

[16]  Harsharaj S. Jadhav,et al.  Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application , 2018 .

[17]  R. Jayakrishnan Photoluminescence in Spray Pyrolysis Deposited β-In2S3 Thin Films , 2018, Journal of Electronic Materials.

[18]  M. Tivanov,et al.  Effect of Substrate temperature on Structural and Optical properties of In2S3 thin films grown by Thermal evaporation , 2017 .

[19]  Yongcai Guo,et al.  Ultrasensitive NO2 gas sensing based on rGO/MoS2 nanocomposite film at low temperature , 2017 .

[20]  J. Shim,et al.  Structural, optical and XPS study of thermal evaporated In2O3 thin films , 2017 .

[21]  Khalifa Aguir,et al.  UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature , 2017 .

[22]  Alastair C. Lewis,et al.  Electrochemical ozone sensors: A miniaturised alternative for ozone measurements in laboratory experiments and air-quality monitoring , 2017 .

[23]  E. Longo,et al.  Local Structure and Surface Properties of CoxZn1-xO Thin Films for Ozone Gas Sensing. , 2016, ACS applied materials & interfaces.

[24]  R. Ismail,et al.  Preparation of high-sensitivity In2S3/Si heterojunction photodetector by chemical spray pyrolysis , 2016 .

[25]  Chun-Han Wu,et al.  Promotion effect of silver on Indium(III) oxide for detecting trace amounts of ozone , 2016 .

[26]  S. A. Mayén-Hernández,et al.  Physical properties of In2S3 thin films grown by chemical bath deposition at different temperatures , 2016 .

[27]  Andriy Zakutayev,et al.  Combinatorial Reactive Sputtering of In2S3 as an Alternative Contact Layer for Thin Film Solar Cells. , 2016, ACS applied materials & interfaces.

[28]  V. Mastelaro,et al.  A novel organic pollutants gas sensing material p-type CuAlO2 microsphere constituted of nanoparticles for environmental remediation , 2016 .

[29]  A. Labidi,et al.  Mechanism of O3 sensing on Cu2O(1 1 1) surface: First principle calculations , 2015 .

[30]  Ren-Jang Wu,et al.  Fast ozone detection by using a core–shell Au@TiO2 sensor at room temperature , 2015 .

[31]  E. Longo,et al.  Ozone and nitrogen dioxide gas sensor based on a nanostructured SrTi0.85Fe0.15O3 thin film , 2015 .

[32]  K. Pandian,et al.  Development of optical sensors for the quantitative detection of ozone using gold and silver thin film nanoislands , 2015 .

[33]  Khalifa Aguir,et al.  An easy method of preparing ozone gas sensors based on ZnO nanorods , 2015 .

[34]  E. Lacaze,et al.  Thickness Effect on Properties of Sprayed In2S3 Films for Photovoltaic Applications , 2015, Journal of Electronic Materials.

[35]  C. Malagù,et al.  Metal Sulfides as a New Class of Sensing Materials , 2015 .

[36]  V. Mastelaro,et al.  In-depth understanding of the relation between CuAlO₂ particle size and morphology for ozone gas sensor detection at a nanoscale level. , 2014, ACS applied materials & interfaces.

[37]  M. Castagné,et al.  Structural, optical, and electrical properties of In2S3:Sn thin films grown by chemical bath deposition on Pyrex , 2012, Journal of Materials Science.

[38]  B. Rezig,et al.  Optical constants of Na–In2S3 thin films prepared by vacuum thermal evaporation technique , 2011 .

[39]  M. Castagné,et al.  Optical study of zinc blend SnS and cubic In2S3:Al thin films prepared by chemical bath deposition , 2011 .

[40]  C. D. Kartha,et al.  Tin doping in spray pyrolysed indium sulfide thin films for solar cell applications , 2010 .

[41]  Dennis Y.C. Leung,et al.  Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation , 2010 .

[42]  Ren-Jang Wu,et al.  Fast-response ozone sensor with ZnO nanorods grown by chemical vapor deposition , 2010 .

[43]  P. Prathap,et al.  Thickness dependent physical properties of close space evaporated In2S3 films , 2009 .

[44]  N. Barreau Indium sulfide and relatives in the world of photovoltaics , 2009 .

[45]  Zhishen Wu,et al.  Preparation of In2S3 nanopraricle by ultrasonic dispersion and its tribology property. , 2009, Ultrasonics sonochemistry.

[46]  T. T. John,et al.  Defect analysis of sprayed β-In2S3 thin films using photoluminescence studies , 2005 .

[47]  T. T. John,et al.  CuInS2/In2S3 thin film solar cell using spray pyrolysis technique having 9.5% efficiency , 2005 .

[48]  T. T. John,et al.  Defect characterization of spray pyrolised β -In2S3 thin film using Thermally Stimulated Current measurements , 2005 .

[49]  M. Powalla,et al.  Band offset at the CuGaSe2∕In2S3 heterointerface , 2004 .

[50]  Khalifa Aguir,et al.  Characterization of ozone sensors based on WO3 reactively sputtered films: influence of O2 concentration in the sputtering gas, and working temperature , 2004 .

[51]  D. Lincot,et al.  Growth studies and characterisation of In2S3 thin films deposited by atomic layer deposition (ALD) , 2004 .

[52]  A. Rothschild,et al.  Numerical computation of chemisorption isotherms for device modeling of semiconductor gas sensors , 2003 .

[53]  N. Barreau,et al.  Study of the new β-In2S3 containing Na thin films. Part II: Optical and electrical characterization of thin films , 2002 .

[54]  M. Ivanovskaya,et al.  Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors , 2001 .

[55]  P. Bertrand,et al.  ToF‐SIMS quantification of polystyrene spectra based on principal component analysis (PCA)† , 1997 .

[56]  S. Chaudhuri,et al.  Bandgap and optical transitions in thin films from reflectance measurements , 1992 .

[57]  Chang-Dae Kim,et al.  Optical energy gaps of β-In2S3 thin films grown by spray pyrolysis , 1986 .

[58]  J. Huntzicker,et al.  Investigation of an ambient interference in the measurement of ozone by ultraviolet absorption photometry , 1979 .

[59]  R. Nitsche,et al.  Vapour growth of three In2S3 modifications by iodine transport , 1975 .

[60]  Optical Processes , 2022, Organic Electronics 1.