A priori filtering and LES modeling of turbulent two-phase flows application to phase separation

The Large Eddy Simulation (LES) of two-phase flows with resolved scale interfaces is investigated through the a priori filtering of Direct Numerical Simulations (DNS) of one-fluid and multifield models. A phase inversion benchmark [ 1 –4] is considered highlighting many coalescence and interface rupture events in a kind of atomization process. The order of magnitude of specific two-phase subgrid LES terms is first considered with the two modeling approaches. Then, different existing models such as Smagorinsky [5], Wall-Adapting Local Eddy-viscosity (WALE) model [6], Bardina [7], Mixed [8] and Approximate Deconvo-lution Model (ADM) [9] are used to account for two-phase subgrid effects. These models are compared to filtered DNS results. The main conclusion concerning a priori LES filtering is that the inertia term is not predominant in two-phase flows with fragmentation and rupture of interface. This conclusion is different from that of the studies of [3, 10–13]. Concerning LES models, functional modeling do not correlate to filtered DNS results whereas structural approaches do. Bardina and ADM are clearly the good LES framework to consider for two-phase flows with resolved scale interfaces. ADM is clearly better than Bardina in our study.

[1]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[2]  Eric Arquis,et al.  Macroscopic analysis of gas-jet wiping: Numerical simulation and experimental approach , 2006 .

[3]  P. Moin,et al.  A General Class of Commutative Filters for LES in Complex Geometries , 1998 .

[4]  Gretar Tryggvason,et al.  Direct Numerical Simulations of Gas–Liquid Multiphase Flows: Introduction , 2011 .

[5]  Gretar Tryggvason,et al.  Direct numerical simulations of gas/liquid multiphase flows , 2011 .

[6]  Olivier Simonin,et al.  DNS of the interaction between a deformable buoyant bubble and a spatially decaying turbulence: A priori tests for LES two-phase flow modelling , 2008 .

[7]  Solène Fleau,et al.  LES Modeling with a Multifield Approach , 2015 .

[8]  Pierre Sagaut,et al.  Numerical simulation of phase separation and a priori two-phase LES filtering , 2008 .

[9]  Keith W. Bedford,et al.  Improved averaging method for turbulent flow simulation. Part II: Calculations and verification , 1986 .

[10]  P. Griffith,et al.  Two-Phase Flow: Theory and Applications , 2017 .

[11]  F. X. Demoulin,et al.  Numerical simulation of primary break-up and atomization: DNS and modelling study , 2009 .

[12]  Solène Fleau,et al.  SIMULATIONS OF TWO-PHASE FLOWS WITH A MULTIFIELD APPROACH , 2015 .

[13]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[14]  Clayton T. Crowe,et al.  Multiphase Flow Handbook , 2005 .

[15]  Stephane Mimouni,et al.  Multifield hybrid approach for two-phase flow modeling – Part 1: Adiabatic flows , 2015 .

[16]  Delphine Lacanette,et al.  Parametric study of LES subgrid terms in a turbulent phase separation flow , 2010 .

[17]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[18]  I. Calmet,et al.  High-Schmidt number mass transfer through turbulent gas–liquid interfaces , 1998 .

[19]  Isabelle Calmet,et al.  Large-eddy simulation of high-Schmidt number mass transfer in a turbulent channel flow , 1997 .

[20]  Pierre Sagaut,et al.  On the filtering paradigm for LES of flows with discontinuities , 2005 .

[21]  J. M. Delhaye,et al.  Jump conditions and entropy sources in two-phase systems , 1974 .

[22]  Isabelle Calmet,et al.  Statistical structure of high-Reynolds-number turbulence close to the free surface of an open-channel flow , 2003, Journal of Fluid Mechanics.

[23]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[24]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[25]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[26]  Artur Tyliszczak,et al.  A new approach to sub-grid surface tension for LES of two-phase flows , 2012, J. Comput. Phys..

[27]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[28]  Djamel Lakehal,et al.  Multi-physics treatment in the vicinity of arbitrarily deformable gas-liquid interfaces , 2007, J. Comput. Phys..

[29]  Pierre Sagaut,et al.  Towards large eddy simulation of isothermal two-phase flows: Governing equations and a priori tests , 2007 .

[30]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[31]  Jean-Marie Seynhaeve,et al.  A first assessment of the NEPTUNE_CFD code: Instabilities in a stratified flow comparison between the VOF method and a two-field approach , 2008 .

[32]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[33]  J. Estivalezes,et al.  A Priori Study for the Modeling of LES Subgrid Scale Terms in Resolved Scale Multiphase Flows , 2015 .

[34]  Jean-Luc Estivalezes,et al.  Detailed comparisons of front‐capturing methods for turbulent two‐phase flow simulations , 2008 .

[35]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[36]  W. Aniszewski,et al.  Volume of Fluid (VOF) type advection methods in two-phase flow: A comparative study , 2014, 1405.5140.

[37]  Jean-Luc Estivalezes,et al.  Direct numerical simulation of a freely decaying turbulent interfacial flow , 2010 .

[38]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[39]  Jean-Luc Estivalezes,et al.  An efficient block parallel AMR method for two phase interfacial flow simulations , 2011 .

[40]  P. Sagaut,et al.  Homogeneous Turbulence Dynamics , 2008 .

[41]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[42]  Stéphane Vincent,et al.  Macroscopic analysis of a turbulent round liquid jet impinging on an air/water interface in a confined medium , 2009 .

[43]  F. Nicoud,et al.  Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor , 1999 .

[44]  Nikolaus A. Adams,et al.  A Subgrid-Scale Deconvolution Approach for Shock Capturing , 2002 .

[45]  Gaurav Tomar,et al.  Multiscale simulations of primary atomization , 2010 .

[46]  Keith W. Bedford,et al.  IMPROVED AVERAGING METHOD FOR TURBULENT FLOW SIMULATION. PART I: THEORETICAL DEVELOPMENT AND APPLICATION TO BURGERS' TRANSPORT EQUATION , 1986 .

[47]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[48]  D. Lakehal,et al.  Interface-turbulence interactions in large-scale bubbling processes , 2007 .

[49]  Philippe Villedieu,et al.  Numerical simulation of primary and secondary atomization , 2013 .

[50]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[51]  Solène Fleau,et al.  Multifield Approach and Interface Locating Method for Two-Phase Flows in Nuclear Power Plant , 2017 .

[52]  Isao Kataoka,et al.  Local instant formulation of two-phase flow , 1986 .

[53]  Gretar Tryggvason,et al.  Computational Methods for Multiphase Flow: Frontmatter , 2007 .

[54]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[55]  Stéphane Vincent,et al.  TEST-CASE NO 15: PHASE INVERSION IN A CLOSED BOX (PC) , 2004 .

[56]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[57]  G. Kreiss,et al.  A conservative level set method for two phase flow II , 2005, Journal of Computational Physics.

[58]  J. Ferziger,et al.  Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows , 1983 .

[59]  Solène Fleau,et al.  Validation of a multifield approach for the simulations of two-phase flows , 2015 .