Spin–orbit evolution of Mercury revisited
暂无分享,去创建一个
Julien Frouard | Michael Efroimsky | M. Efroimsky | V. Makarov | B. Noyelles | Valeri Makarov | Benoit Noyelles | J. Frouard
[1] J. Laskar,et al. Existence of collisional trajectories of Mercury, Mars and Venus with the Earth , 2009, Nature.
[2] M. Trieloff,et al. PHOTOPHORETIC SEPARATION OF METALS AND SILICATES: THE FORMATION OF MERCURY-LIKE PLANETS AND METAL DEPLETION IN CHONDRITES , 2013, 1305.0689.
[3] W. Benz,et al. The Origin of Mercury , 2007 .
[4] C. Lhotka,et al. The influence of orbital dynamics, shape and tides on the obliquity of Mercury , 2012, 1211.7027.
[5] Doris Breuer,et al. Interior Evolution of Mercury , 2007 .
[6] S. Peale,et al. Spin-orbit coupling in the solar system.1 The resonant rotation of Venus , 1967 .
[7] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[8] P. Sonneveld. Errors in cubic spline interpolation , 1969 .
[9] M. Wieczorek,et al. Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System , 2011 .
[10] M. Efroimsky,et al. NO PSEUDOSYNCHRONOUS ROTATION FOR TERRESTRIAL PLANETS AND MOONS , 2012, 1209.1616.
[11] Tidal decay of close planetary orbits , 1996, astro-ph/9605059.
[12] M. Guzzo. The web of three-planet resonances in the outer Solar System , 2005 .
[13] B. Fegley,et al. A vaporization model for iron/silicate fractionation in the Mercury protoplanet , 1987 .
[14] B. Hager,et al. Giant meteoroid impacts can cause volcanism , 2005 .
[15] J. Laskar. Chaotic diffusion in the Solar System , 2007, 0802.3371.
[16] M. Efroimsky. Bodily tides near spin–orbit resonances , 2011, 1105.6086.
[17] K. Walsh,et al. Constraining the primordial orbits of the terrestrial planets , 2013, 1306.0975.
[18] J. Laskar. Secular terms of classical planetary theories using the results of general theory , 1986 .
[19] A. G. W. Cameron,et al. The partial volatilization of Mercury , 1985 .
[20] S. Singer. The Origin of the Moon and Geophysical Consequences , 2007 .
[21] A. Boss,et al. Mercury's core - The effect of obliquity on the spin-orbit constraints , 1977 .
[22] A. Milani,et al. Fundamental frequencies and small divisors in the orbits of the outer planets , 1989 .
[23] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[24] J. Laskar,et al. The four final rotation states of Venus , 2001, Nature.
[25] Clark R. Chapman,et al. Mercury Cratering Record Viewed from MESSENGER's First Flyby , 2008, Science.
[26] R. Jurgens,et al. Large Longitude Libration of Mercury Reveals a Molten Core , 2007, Science.
[27] Jacques Laskar,et al. A long-term numerical solution for the insolation quantities of the Earth , 2004 .
[28] Piet Hut,et al. Tidal evolution in close binary systems , 1981 .
[29] R. L. Duncombe,et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites , 1980 .
[30] Donald L. Turcotte,et al. Geodynamics - 2nd Edition , 2002 .
[31] Peter P. Eggleton,et al. The Equilibrium Tide Model for Tidal Friction , 1998, astro-ph/9801246.
[32] Harold F. Levison,et al. On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation , 1999 .
[33] J. Laskar,et al. Mercury's capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction , 2009, 0901.1843.
[34] Jacques Laskar,et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .
[35] James G. Williams,et al. Bodily tides near the 1:1 spin-orbit resonance: correction to Goldreich’s dynamical model , 2012, 1210.2923.
[36] Mark S. Robinson,et al. The Evolution of Mercury’s Crust: A Global Perspective from MESSENGER , 2009, Science.
[37] Clark R. Chapman,et al. Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history , 2011 .
[38] J. Henrard,et al. Capture into resonance: An extension of the use of adiabatic invariants , 1982 .
[39] Donald B. Campbell,et al. Mercury's moment of inertia from spin and gravity data , 2012 .
[40] G. Colombo,et al. Rotational Period of the Planet Mercury , 1965, Nature.
[41] Jacques Laskar,et al. Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics , 2004, Nature.
[42] S. Ferraz-Mello. Tidal synchronization of close-in satellites and exoplanets: II. Spin dynamics and extension to Mercury and exoplanet host stars , 2015, 1505.05384.
[43] M. Efroimsky,et al. DYNAMICAL EVOLUTION AND SPIN-ORBIT RESONANCES OF POTENTIALLY HABITABLE EXOPLANETS. THE CASE OF GJ 667C , 2012, 1208.0814.
[44] William H. Press,et al. Numerical recipes , 1990 .
[45] Katja Nowick,et al. The Origin of Planetary Impactors in the Inner Solar System , 2005 .
[46] Thomas Gold,et al. Atmospheric tides and the resonant rotation of Venus , 1969 .
[47] Thomas R. Quinn,et al. A Three Million Year Integration of the Earth's Orbit , 1991 .
[48] J. Laskar,et al. A simple model of the chaotic eccentricity of Mercury , 2012, 1210.5221.
[49] Luke Dones,et al. On the Origin of Planetary Spins , 1993 .
[50] Willy Benz,et al. Collisional stripping of Mercury's mantle , 1988 .
[51] J. Laskar. Secular evolution of the solar system over 10 million years , 1988 .
[52] James G. Williams,et al. Tidal torques: a critical review of some techniques , 2008, 0803.3299.
[53] D. Tholen,et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 , 2011 .
[54] C. Murray,et al. Solar System Dynamics: Expansion of the Disturbing Function , 1999 .
[55] S. Karato,et al. Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle , 1990 .
[56] R. Malhotra. Tidal origin of the Laplace resonance and the resurfacing of Ganymede , 1991 .
[57] M. Efroimsky,et al. TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE , 2012, 1209.1615.
[58] G. Darwin. XIII. On the precession of a viscous spheroid, and on the remote history of the Earth , 1879, Philosophical Transactions of the Royal Society of London.
[59] G. Sussman,et al. Chaotic Evolution of the Solar System , 1992, Science.
[60] K. Tsiganis,et al. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.
[61] F. Mignard. The evolution of the lunar orbit revisited. I , 1979 .
[62] The web of three-planet resonances in the outer Solar System: II. A source of orbital instability for Uranus and Neptune , 2006 .
[63] S. Ferraz-Mello. Tidal synchronization of close-in satellites and exoplanets. A rheophysical approach , 2012, 1204.3957.
[64] J. Chambers. Making More Terrestrial Planets , 2001 .
[65] David E. Smith,et al. Gravity Field and Internal Structure of Mercury from MESSENGER , 2012, Science.
[66] N. Ness,et al. The magnetic field of Mercury, 1 , 1975 .
[67] N. Ness,et al. Magnetic Field Observations near Mercury: Preliminary Results from Mariner 10 , 1974, Science.
[68] S. Peale. The Free Precession and Libration of Mercury , 2005, astro-ph/0507117.
[69] J. Laskar,et al. Long-term evolution of the spin of Mercury: I. Effect of the obliquity and core–mantle friction , 2009, 0908.3912.
[70] G. Laughlin,et al. On the Dynamical Stability of the Solar System , 2008, 0804.1946.
[71] Germund Dahlquist,et al. Numerical methods in scientific computing , 2008 .
[72] A. Dobrovolskis. Spin states and climates of eccentric exoplanets , 2006 .
[73] T. Teichmann,et al. Fundamentals of celestial mechanics , 1963 .
[74] J. Laskar,et al. Different tidal torques on a planet with a dense atmosphere and consequences to the spin dynamics , 2003 .
[75] V. Lainey,et al. Physics of Bodily Tides in Terrestrial Planets and the Appropriate Scales of Dynamical Evolution , 2007, 0709.1995.
[76] G. Pettengill,et al. A Radar Determination of the Rotation of the Planet Mercury , 1965, Nature.
[77] S. Peale,et al. The Dynamics of Planetary Rotations , 1968 .
[78] P. Bretagnon. Theorie du mouvement de l'ensemble des planetes (VSOP82). , 1982 .
[79] J. Laskar,et al. A pre-Caloris synchronous rotation for Mercury , 2011, 1112.2384.
[80] J. Laskar,et al. Mercury’s spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation , 2012 .
[81] A. Morbidellia,et al. The Yarkovsky-driven origin of near-Earth asteroids , 2003 .
[82] A. Fienga,et al. La2010: a new orbital solution for the long-term motion of the Earth , 2011, 1103.1084.
[83] J. Head,et al. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism , 2013, Nature.
[84] M. Efroimsky. TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS , 2011, 1105.3936.
[85] M. Efroimsky. Tidal dissipation compared to seismic dissipation : in small bodies , in earths , and in superearths , 2011 .
[86] J. Wisdom. Chaotic behaviour in the Solar System , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[87] Germund Dahlquist,et al. Numerical Methods in Scientific Computing: Volume 1 , 2008 .
[88] James A. Slavin,et al. The Magnetic Field of Mercury , 2010 .
[89] V. Makarov. CONDITIONS OF PASSAGE AND ENTRAPMENT OF TERRESTRIAL PLANETS IN SPIN-ORBIT RESONANCES , 2012 .
[90] Alessandro Morbidelli,et al. The Yarkovsky-driven origin of near-Earth asteroids , 2003 .
[91] H. Jeffreys. Tidal Friction , 1973, Nature.
[92] Peter Goldreich,et al. Spin-orbit coupling in the solar system , 1966 .
[93] A. Boss,et al. A spin-orbit constraint on the viscosity of a Mercurian liquid core , 1977 .
[94] Wayne B. Hayes. Is the outer Solar System chaotic , 2007 .
[95] P. Goldreich. Final spin states of planets and satellites. , 1966 .
[96] V. Lainey,et al. The tidal history of Iapetus: Spin dynamics in the light of a refined dissipation model , 2011 .
[97] W. M. Kaula. Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .
[98] S. Solomon,et al. The tides of Mercury and possible implications for its interior structure , 2014 .
[99] J. Laskar,et al. IMPACT CRATERING ON MERCURY: CONSEQUENCES FOR THE SPIN EVOLUTION , 2012, 1205.4615.
[100] Valeri V. Makarov,et al. TIDAL DISSIPATION IN A HOMOGENEOUS SPHERICAL BODY. II. THREE EXAMPLES: MERCURY, IO, AND Kepler-10 b , 2014, 1406.2352.
[101] David E. Smith,et al. Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data , 2012 .
[102] E. Kokubo,et al. Formation of Terrestrial Planets from Protoplanets. II. Statistics of Planetary Spin , 2007 .
[103] I. Shapiro,et al. Spin-orbit resonance of Mercury , 1969 .
[104] J. Laskar. A numerical experiment on the chaotic behaviour of the Solar System , 1989, Nature.
[105] S. Weidenschilling,et al. Iron Silicate Fractionation and the Origin of Mercury , 1978 .