Spin–orbit evolution of Mercury revisited

Abstract Although it is accepted that the significant eccentricity of Mercury (0.206) favours entrapment into the 3:2 spin–orbit resonance, open are the questions of how and when the capture took place. A recent work by Makarov (Makarov, V.V. [2012]. Astrophys. J., 752, 73) has proven that trapping into this state is certain for eccentricities larger than 0.2 , provided we use a realistic tidal model based on the Darwin–Kaula expansion of the tidal torque. While in Ibid. a Mercury-like planet had its eccentricity fixed, we take into account its evolution. To that end, a family of possible histories of the eccentricity is generated, based on synthetic time evolution consistent with the expected statistics of the distribution of eccentricity. We employ a model of tidal friction, which takes into account both the rheology and self-gravitation of the planet. As opposed to the commonly used constant time lag (CTL) and constant phase lag (CPL) models, the physics-based tidal model changes dramatically the statistics of the possible final spin states. First, we discover that after only one encounter with the spin–orbit 3:2 resonance this resonance becomes the most probable end-state. Second, if a capture into this (or any other) resonance takes place, the capture becomes final, several crossings of the same state being forbidden by our model. Third, within our model the trapping of Mercury happens much faster than previously believed: for most histories, 10–20 Myr are sufficient. Fourth, even a weak laminar friction between the solid mantle and a molten core would most likely result in a capture in the 2:1 or even higher resonance, which is confirmed both semi-analytically and by limited numerical simulations. So the principal novelty of our paper is that the 3:2 end-state is more ancient than the same end-state obtained when the constant time lag model is employed. The swift capture justifies our treatment of Mercury as a homogeneous, unstratified body whose liquid core had not yet formed by the time of trapping. We also provide a critical analysis of the hypothesis by Wieczorek et al. (Wieczorek, M.A., Correia, A.C.M., Le Feuvre, M., Laskar, J., Rambaux, N. [2012]. Nat. Geosci., 5, 18–21) that the early Mercury might had been retrograde, whereafter it synchronised its spin and then accelerated it to the 3:2 resonance. Accurate processing of the available data on cratering does not support that hypothesis, while the employment of a realistic rheology invalidates a key element of the hypothesis, an intermediate pseudosynchronous state needed to spin-up to the 3:2 resonance.

[1]  J. Laskar,et al.  Existence of collisional trajectories of Mercury, Mars and Venus with the Earth , 2009, Nature.

[2]  M. Trieloff,et al.  PHOTOPHORETIC SEPARATION OF METALS AND SILICATES: THE FORMATION OF MERCURY-LIKE PLANETS AND METAL DEPLETION IN CHONDRITES , 2013, 1305.0689.

[3]  W. Benz,et al.  The Origin of Mercury , 2007 .

[4]  C. Lhotka,et al.  The influence of orbital dynamics, shape and tides on the obliquity of Mercury , 2012, 1211.7027.

[5]  Doris Breuer,et al.  Interior Evolution of Mercury , 2007 .

[6]  S. Peale,et al.  Spin-orbit coupling in the solar system.1 The resonant rotation of Venus , 1967 .

[7]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[8]  P. Sonneveld Errors in cubic spline interpolation , 1969 .

[9]  M. Wieczorek,et al.  Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System , 2011 .

[10]  M. Efroimsky,et al.  NO PSEUDOSYNCHRONOUS ROTATION FOR TERRESTRIAL PLANETS AND MOONS , 2012, 1209.1616.

[11]  Tidal decay of close planetary orbits , 1996, astro-ph/9605059.

[12]  M. Guzzo The web of three-planet resonances in the outer Solar System , 2005 .

[13]  B. Fegley,et al.  A vaporization model for iron/silicate fractionation in the Mercury protoplanet , 1987 .

[14]  B. Hager,et al.  Giant meteoroid impacts can cause volcanism , 2005 .

[15]  J. Laskar Chaotic diffusion in the Solar System , 2007, 0802.3371.

[16]  M. Efroimsky Bodily tides near spin–orbit resonances , 2011, 1105.6086.

[17]  K. Walsh,et al.  Constraining the primordial orbits of the terrestrial planets , 2013, 1306.0975.

[18]  J. Laskar Secular terms of classical planetary theories using the results of general theory , 1986 .

[19]  A. G. W. Cameron,et al.  The partial volatilization of Mercury , 1985 .

[20]  S. Singer The Origin of the Moon and Geophysical Consequences , 2007 .

[21]  A. Boss,et al.  Mercury's core - The effect of obliquity on the spin-orbit constraints , 1977 .

[22]  A. Milani,et al.  Fundamental frequencies and small divisors in the orbits of the outer planets , 1989 .

[23]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[24]  J. Laskar,et al.  The four final rotation states of Venus , 2001, Nature.

[25]  Clark R. Chapman,et al.  Mercury Cratering Record Viewed from MESSENGER's First Flyby , 2008, Science.

[26]  R. Jurgens,et al.  Large Longitude Libration of Mercury Reveals a Molten Core , 2007, Science.

[27]  Jacques Laskar,et al.  A long-term numerical solution for the insolation quantities of the Earth , 2004 .

[28]  Piet Hut,et al.  Tidal evolution in close binary systems , 1981 .

[29]  R. L. Duncombe,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites , 1980 .

[30]  Donald L. Turcotte,et al.  Geodynamics - 2nd Edition , 2002 .

[31]  Peter P. Eggleton,et al.  The Equilibrium Tide Model for Tidal Friction , 1998, astro-ph/9801246.

[32]  Harold F. Levison,et al.  On the Character and Consequences of Large Impacts in the Late Stage of Terrestrial Planet Formation , 1999 .

[33]  J. Laskar,et al.  Mercury's capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction , 2009, 0901.1843.

[34]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[35]  James G. Williams,et al.  Bodily tides near the 1:1 spin-orbit resonance: correction to Goldreich’s dynamical model , 2012, 1210.2923.

[36]  Mark S. Robinson,et al.  The Evolution of Mercury’s Crust: A Global Perspective from MESSENGER , 2009, Science.

[37]  Clark R. Chapman,et al.  Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history , 2011 .

[38]  J. Henrard,et al.  Capture into resonance: An extension of the use of adiabatic invariants , 1982 .

[39]  Donald B. Campbell,et al.  Mercury's moment of inertia from spin and gravity data , 2012 .

[40]  G. Colombo,et al.  Rotational Period of the Planet Mercury , 1965, Nature.

[41]  Jacques Laskar,et al.  Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics , 2004, Nature.

[42]  S. Ferraz-Mello Tidal synchronization of close-in satellites and exoplanets: II. Spin dynamics and extension to Mercury and exoplanet host stars , 2015, 1505.05384.

[43]  M. Efroimsky,et al.  DYNAMICAL EVOLUTION AND SPIN-ORBIT RESONANCES OF POTENTIALLY HABITABLE EXOPLANETS. THE CASE OF GJ 667C , 2012, 1208.0814.

[44]  William H. Press,et al.  Numerical recipes , 1990 .

[45]  Katja Nowick,et al.  The Origin of Planetary Impactors in the Inner Solar System , 2005 .

[46]  Thomas Gold,et al.  Atmospheric tides and the resonant rotation of Venus , 1969 .

[47]  Thomas R. Quinn,et al.  A Three Million Year Integration of the Earth's Orbit , 1991 .

[48]  J. Laskar,et al.  A simple model of the chaotic eccentricity of Mercury , 2012, 1210.5221.

[49]  Luke Dones,et al.  On the Origin of Planetary Spins , 1993 .

[50]  Willy Benz,et al.  Collisional stripping of Mercury's mantle , 1988 .

[51]  J. Laskar Secular evolution of the solar system over 10 million years , 1988 .

[52]  James G. Williams,et al.  Tidal torques: a critical review of some techniques , 2008, 0803.3299.

[53]  D. Tholen,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 , 2011 .

[54]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[55]  S. Karato,et al.  Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle , 1990 .

[56]  R. Malhotra Tidal origin of the Laplace resonance and the resurfacing of Ganymede , 1991 .

[57]  M. Efroimsky,et al.  TIDAL FRICTION AND TIDAL LAGGING. APPLICABILITY LIMITATIONS OF A POPULAR FORMULA FOR THE TIDAL TORQUE , 2012, 1209.1615.

[58]  G. Darwin XIII. On the precession of a viscous spheroid, and on the remote history of the Earth , 1879, Philosophical Transactions of the Royal Society of London.

[59]  G. Sussman,et al.  Chaotic Evolution of the Solar System , 1992, Science.

[60]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[61]  F. Mignard The evolution of the lunar orbit revisited. I , 1979 .

[62]  The web of three-planet resonances in the outer Solar System: II. A source of orbital instability for Uranus and Neptune , 2006 .

[63]  S. Ferraz-Mello Tidal synchronization of close-in satellites and exoplanets. A rheophysical approach , 2012, 1204.3957.

[64]  J. Chambers Making More Terrestrial Planets , 2001 .

[65]  David E. Smith,et al.  Gravity Field and Internal Structure of Mercury from MESSENGER , 2012, Science.

[66]  N. Ness,et al.  The magnetic field of Mercury, 1 , 1975 .

[67]  N. Ness,et al.  Magnetic Field Observations near Mercury: Preliminary Results from Mariner 10 , 1974, Science.

[68]  S. Peale The Free Precession and Libration of Mercury , 2005, astro-ph/0507117.

[69]  J. Laskar,et al.  Long-term evolution of the spin of Mercury: I. Effect of the obliquity and core–mantle friction , 2009, 0908.3912.

[70]  G. Laughlin,et al.  On the Dynamical Stability of the Solar System , 2008, 0804.1946.

[71]  Germund Dahlquist,et al.  Numerical methods in scientific computing , 2008 .

[72]  A. Dobrovolskis Spin states and climates of eccentric exoplanets , 2006 .

[73]  T. Teichmann,et al.  Fundamentals of celestial mechanics , 1963 .

[74]  J. Laskar,et al.  Different tidal torques on a planet with a dense atmosphere and consequences to the spin dynamics , 2003 .

[75]  V. Lainey,et al.  Physics of Bodily Tides in Terrestrial Planets and the Appropriate Scales of Dynamical Evolution , 2007, 0709.1995.

[76]  G. Pettengill,et al.  A Radar Determination of the Rotation of the Planet Mercury , 1965, Nature.

[77]  S. Peale,et al.  The Dynamics of Planetary Rotations , 1968 .

[78]  P. Bretagnon Theorie du mouvement de l'ensemble des planetes (VSOP82). , 1982 .

[79]  J. Laskar,et al.  A pre-Caloris synchronous rotation for Mercury , 2011, 1112.2384.

[80]  J. Laskar,et al.  Mercury’s spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation , 2012 .

[81]  A. Morbidellia,et al.  The Yarkovsky-driven origin of near-Earth asteroids , 2003 .

[82]  A. Fienga,et al.  La2010: a new orbital solution for the long-term motion of the Earth , 2011, 1103.1084.

[83]  J. Head,et al.  Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism , 2013, Nature.

[84]  M. Efroimsky TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS , 2011, 1105.3936.

[85]  M. Efroimsky Tidal dissipation compared to seismic dissipation : in small bodies , in earths , and in superearths , 2011 .

[86]  J. Wisdom Chaotic behaviour in the Solar System , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[87]  Germund Dahlquist,et al.  Numerical Methods in Scientific Computing: Volume 1 , 2008 .

[88]  James A. Slavin,et al.  The Magnetic Field of Mercury , 2010 .

[89]  V. Makarov CONDITIONS OF PASSAGE AND ENTRAPMENT OF TERRESTRIAL PLANETS IN SPIN-ORBIT RESONANCES , 2012 .

[90]  Alessandro Morbidelli,et al.  The Yarkovsky-driven origin of near-Earth asteroids , 2003 .

[91]  H. Jeffreys Tidal Friction , 1973, Nature.

[92]  Peter Goldreich,et al.  Spin-orbit coupling in the solar system , 1966 .

[93]  A. Boss,et al.  A spin-orbit constraint on the viscosity of a Mercurian liquid core , 1977 .

[94]  Wayne B. Hayes Is the outer Solar System chaotic , 2007 .

[95]  P. Goldreich Final spin states of planets and satellites. , 1966 .

[96]  V. Lainey,et al.  The tidal history of Iapetus: Spin dynamics in the light of a refined dissipation model , 2011 .

[97]  W. M. Kaula Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .

[98]  S. Solomon,et al.  The tides of Mercury and possible implications for its interior structure , 2014 .

[99]  J. Laskar,et al.  IMPACT CRATERING ON MERCURY: CONSEQUENCES FOR THE SPIN EVOLUTION , 2012, 1205.4615.

[100]  Valeri V. Makarov,et al.  TIDAL DISSIPATION IN A HOMOGENEOUS SPHERICAL BODY. II. THREE EXAMPLES: MERCURY, IO, AND Kepler-10 b , 2014, 1406.2352.

[101]  David E. Smith,et al.  Large impact basins on Mercury: Global distribution, characteristics, and modification history from MESSENGER orbital data , 2012 .

[102]  E. Kokubo,et al.  Formation of Terrestrial Planets from Protoplanets. II. Statistics of Planetary Spin , 2007 .

[103]  I. Shapiro,et al.  Spin-orbit resonance of Mercury , 1969 .

[104]  J. Laskar A numerical experiment on the chaotic behaviour of the Solar System , 1989, Nature.

[105]  S. Weidenschilling,et al.  Iron Silicate Fractionation and the Origin of Mercury , 1978 .