Optimal results for the fractional heat equation involving the Hardy potential

In this paper we study the influence of the Hardy potential in the fractional heat equation. In particular, we consider the problem $$(P_\theta)\quad \left\{ \begin{array}{rcl} u_t+(-\Delta)^{s} u&=&l\dfrac{\,u}{|x|^{2s}}+\theta u^p+ c f\mbox{ in } \Omega\times (0,T),\\ u(x,t)&>&0\inn \Omega\times (0,T),\\ u(x,t)&=&0\inn (\ren\setminus\Omega)\times[ 0,T),\\ u(x,0)&=&u_0(x) \mbox{ if }x\inO, \end{array} \right. $$ where $N> 2s$, $0 1$, $c,l>0$, $u_0\ge 0$, $f\ge 0$ are in a suitable class of functions and $\theta=\{0,1\}$. Notice that $(P_0)$ is a linear problem, while $(P_1)$ is a semilinear problem. The main features in the article are: \begin{enumerate} \item Optimal results about \emph{existence} and \emph{instantaneous and complete blow up} in the linear problem $(P_0)$, where the best constant $\Lambda_{N,s}$ in the fractional Hardy inequality provides the threshold between existence and nonexistence. Similar results in the local heat equation were obtained by Baras and Goldstein in \cite{BaGo}. However, in the fractional setting the arguments are much more involved and they require the proof of a weak Harnack inequality for a weighted operator that appear in a natural way. Once this Harnack inequality is obtained, the optimal results follow as a simpler consequence than in the classical case. \item The existence of a critical power $p_+(s,\lambda)$ in the semilinear problem $(P_1)$ such that: \begin{enumerate} \item If $p> p_+(s,\lambda)$, the problem has no weak positive supersolutions and a phenomenon of \emph{complete and instantaneous blow up} happens. \item If $p< p_+(s,\lambda)$, there exists a positive solution for a suitable class of nonnegative data. \end{enumerate} \end{enumerate}

[1]  B. Abdellaoui,et al.  Influence of the Hardy potential in a semilinear heat equation , 2009, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  Jerome A. Goldstein,et al.  THE HEAT EQUATION WITH A SINGULAR POTENTIAL , 1984 .

[3]  J. Moser On a pointwise estimate for parabolic differential equations , 1971 .

[4]  B. Abdellaoui,et al.  A remark on the fractional Hardy inequality with a remainder term , 2014 .

[5]  Xavier Ros-Oton,et al.  Boundary regularity for the fractional heat equation , 2014, 1412.0275.

[6]  W. Allegretto,et al.  A Picone's identity for the p -Laplacian and applications , 1998 .

[7]  J. Moser A Harnack inequality for parabolic di2erential equations , 1964 .

[8]  B. Abdellaoui,et al.  Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential , 2003 .

[9]  Bartlomiej Dyda,et al.  On weighted Poincar\'e inequalities , 2012 .

[10]  B. Barrios,et al.  Some remarks on the solvability of non-local elliptic problems with the Hardy potential , 2014 .

[11]  B. Abdellaoui,et al.  Caffarelli–Kohn–Nirenberg type inequalities of fractional order with applications , 2016, 1611.04724.

[12]  E. Giusti,et al.  Harnack's inequality for elliptic differential equations on minimal surfaces , 1972 .

[13]  Moritz Kassmann,et al.  On weighted Poincaré inequalities , 2012 .

[14]  A. Dall'Aglio Approximated solutions of equations withL1 data. Application to theH-convergence of quasi-linear parabolic equations , 1996 .

[15]  E. Stein,et al.  Fractional Integrals on n-Dimensional Euclidean Space , 1958 .

[16]  Luis Silvestre,et al.  Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .

[17]  M. Fall Semilinear elliptic equations for the fractional Laplacian with Hardy potential , 2011, Nonlinear Analysis.

[18]  R. Frank A Simple Proof of Hardy-Lieb-Thirring Inequalities , 2008, 0809.3797.

[19]  M. Picone Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare ordinaria del second'ordine , 1909 .

[20]  Tommaso Leonori,et al.  Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations , 2015 .

[21]  A. Prignet Existence and uniqueness of “entropy” solutions of parabolic problems with L 1 data , 1997 .

[22]  D. Yafaev Sharp Constants in the Hardy–Rellich Inequalities , 1999 .

[23]  H'ector A. Chang-Lara,et al.  Regularity for solutions of nonlocal parabolic equations II , 2014 .

[24]  Jingang Xiong,et al.  Schauder estimates for solutions of linear parabolic integro-differential equations , 2014, 1405.0755.

[25]  C. E. Gutiérrez,et al.  Mean value and Harnack inequalities for degenerate parabolic equations , 1990 .

[26]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[27]  I. Herbst Spectral theory of the operator (p2+m2)1/2−Ze2/r , 1977 .

[28]  F. Chiarenza,et al.  Boundedness for the solutions of a degenerate parabolic equation , 1984 .

[29]  Elliott H. Lieb,et al.  Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators , 2006 .

[30]  R. Serapioni,et al.  A Harnack inequality for degenerate parabolic equations , 1984 .

[31]  E. Valdinoci,et al.  A Widder’s Type Theorem for the Heat Equation with Nonlocal Diffusion , 2013, 1302.1786.

[32]  Alessio Figalli,et al.  Regularity of solutions to the parabolic fractional obstacle problem , 2011, 1101.5170.

[33]  H. Brezis,et al.  Some simple nonlinear PDE's without solutions , 1998 .

[34]  Laurent Saloff-Coste,et al.  Aspects of Sobolev-type inequalities , 2001 .

[35]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[36]  M. Kassmann,et al.  Local Regularity for Parabolic Nonlocal Operators , 2012, 1203.2126.

[37]  T. Gallouët,et al.  Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data , 1996 .

[38]  William Beckner,et al.  Pitt’s inequality and the uncertainty principle , 1995 .

[39]  Enrico Valdinoci,et al.  WEAK AND VISCOSITY SOLUTIONS OF THE FRACTIONAL LAPLACE EQUATION , 2014 .

[40]  F. Ferrari,et al.  Radial fractional Laplace operators and Hessian inequalities , 2012, 1203.3149.

[41]  E. Artin,et al.  The Gamma Function , 1964 .

[42]  Gonzalo Dávila,et al.  Regularity for solutions of non local parabolic equations , 2011, 1109.3247.

[43]  B. Abdellaoui,et al.  The effect of the Hardy potential in some Calder\'on-Zygmund properties for the fractional Laplacian , 2015, 1510.08604.

[44]  Jingang Xiong,et al.  Schauder estimates for nonlocal fully nonlinear equations , 2014, 1405.0758.

[45]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .