Modeling of magnetron sputtering plasmas

Partially ionized, low-temperature plasmas have been used extensively in many areas of technology. These applications of plasma include surface processing and lighting devices. There are three major categories in surface processing: sputtering, etching and surface modification. The examples of lighting device application are light bulbs, lasers and plasma display devices. In this discussion, simulation study of magnetron sputtering system are reviewed and future issues of these systems are discussed. A two-dimensional three-velocity particle-in-cell (PIC) code is used to simulate kinetic plasma properties in a planar magnetron system with realistic magnetic fields in two and three dimensions. Various plasma characteristics and erosion profiles of a target material are obtained with these magnetic fields. Scaling formulas are used in order to estimate the steady-state properties of plasma and reduce computation time. Variations in the geometry and the magnetic field optimize these erosion profiles and plasma characteristics. For the plasma characteristics, we also calculate the plasma temperature and the velocity distribution function. The velocity distribution function of electrons is nearly Maxwellian, while that of ions is non-Maxwellian. The electron temperature in the bulk coincides well with the experimentally measured values. The majority of ions are in the energy range below half of the applied voltage.

[1]  J. Goree,et al.  Electron and ion transport in magnetron plasmas , 1990 .

[2]  R. S. Robinson,et al.  Monte Carlo model of topography development during sputtering , 1983 .

[3]  G. M. Rao,et al.  Transport of sputtered atoms in facing targets sputtering geometry: A numerical simulation study , 1998 .

[4]  J. Goree,et al.  Observation of two-temperature electrons in a sputtering magnetron plasma , 1991 .

[5]  T. Motohiro,et al.  Applications of Monte Carlo simulation in the analysis of a sputter‐deposition process , 1986 .

[6]  Kenichi Nanbu,et al.  Self-consistent particle simulation of three-dimensional dc magnetron discharge , 1996 .

[7]  Michael A. Lieberman,et al.  Spatial structure of a planar magnetron discharge , 1990 .

[8]  Dc Daan Schram,et al.  PLASIMO, a general model: I. Applied to an argon cascaded arc plasma , 1999 .

[9]  J. Goree,et al.  Electron velocity distribution functions in a sputtering magnetron discharge for the E×B direction , 1998 .

[10]  S. Kawamoto,et al.  Particle-in-cell plus direct simulation Monte Carlo (PIC-DSMC) approach for self-consistent plasma-gas simulations , 1999 .

[11]  Shunji Ido,et al.  Computational Studies of Plasma Generation and Control in a Magnetron Sputtering System , 1999 .

[12]  H. Meuth,et al.  Radial current distribution at a planar magnetron cathode , 1988 .

[13]  R. Somekh The thermalization of energetic atoms during the sputtering process , 1984 .

[14]  S. Kondo,et al.  Analysis of Three-Dimensional DC Magnetron Discharge by the Particle-in-Cell/Monte Carlo Method , 1997 .

[15]  Matthew Goeckner,et al.  Monte Carlo simulation of ions in a magnetron plasma , 1991 .

[16]  J. Bradley,et al.  Model of the cathode fall region in magnetron discharges , 1997 .

[17]  Y. Yamamura,et al.  Monte Carlo simulation of the thermalization of sputtered atoms and reflected atoms in the magnetron sputtering discharge , 1995 .

[18]  Y. Choi,et al.  A Study of Sheath Electric Fields in Planar Magnetron Discharges using Laser Induced Fluorescence Spectroscopy , 1996 .

[19]  G. M. Turner,et al.  Monte Carlo calculations of the properties of sputtered atoms at a substrate surface in a magnetron discharge , 1992 .

[20]  Hiroshi Fujiyama,et al.  Application of the Child-Langmuir law to magnetron discharge plasmas , 1994 .

[21]  R. Kukla Magnetron sputtering on large scale substrates: an overview on the state of the art , 1997 .

[22]  Toshiaki Makabe,et al.  Influence of gas pressure and magnetic field upon dc magnetron discharge , 2001 .

[23]  Stephen M. Rossnagel,et al.  Gas density reduction effects in magnetrons , 1988 .

[24]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[25]  M. Lieberman,et al.  Axial distribution of optical emission in a planar magnetron discharge , 1988 .

[26]  T. Nomura,et al.  Three-Dimensional Simulation of Target Erosion in DC Magnetron Sputtering , 1994 .

[27]  Matthew Goeckner,et al.  Model of energetic electron transport in magnetron discharges , 1990 .

[28]  K. Ness,et al.  Visualization of ion and electron velocity distribution functions in electric and magnetic fields , 2001 .

[29]  G. M. Turner Monte Carlo calculations of gas rarefaction in a magnetron sputtering discharge , 1995 .

[30]  D. W. Hoffman A sputtering wind , 1985 .

[31]  J. Bretagne,et al.  Modelling of an reactive magnetron discharge used for deposition of chromium oxide , 1996 .

[32]  N. Cramer Analysis of a one-dimensional, steady-state magnetron discharge , 1997 .

[33]  T. Makabe,et al.  Prediction of the evolution of the erosion profile in a direct current magnetron discharge , 1999 .

[34]  Kenichi Nanbu,et al.  Monte Carlo numerical analysis of target erosion and film growth in a three‐dimensional sputtering chamber , 1996 .

[35]  H. Kaufman,et al.  Langmuir probe characterization of magnetron operation , 1986 .

[36]  F. Guimarães,et al.  Study of an argon magnetron discharge used for molybdenum sputtering. I. Collisional radiative model , 1993 .

[37]  Renaat Gijbels,et al.  Calculation of gas heating in direct current argon glow discharges , 2000 .

[38]  J. Goree,et al.  Low‐frequency turbulent transport in magnetron plasmas , 1989 .

[39]  J. Vossen,et al.  Thin Film Processes , 1979 .

[40]  T. Chung,et al.  Velocity distributions in magnetron sputter , 1998 .

[41]  J. Goree,et al.  Magnetic field dependence of sputtering magnetron efficiency , 1991 .

[42]  Y. Uchikawa,et al.  Ceramics inner coating of narrow tubes by a coaxial magnetron pulsed plasma , 1998 .