Efficient Implementation of Finite Element Methods on Nonmatching and Overlapping Meshes in Three Dimensions

In recent years, a number of finite element methods have been formulated for the solution of partial differential equations on complex geometries based on nonmatching or overlapping meshes. Examples of such methods are the fictitious domain method, the extended finite element method, and Nitsche's method. In all these methods, integrals must be computed over cut cells or subsimplices, which is challenging to implement, especially in three space dimensions. In this note, we address the main challenges of such an implementation and demonstrate good performance of a fully general code for automatic detection of mesh intersections and integration over cut cells and subsimplices. As a canonical example of an overlapping mesh method, we consider Nitsche's method, which we apply to Poisson's equation and a linear elastic problem.

[1]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[2]  R. Codina,et al.  The fixed‐mesh ALE approach applied to solid mechanics and fluid–structure interaction problems , 2009 .

[3]  Aristides A. G. Requicha,et al.  Algorithms for computing the volume and other integral properties of solids. I. known methods and open issues , 1982, CACM.

[4]  Brian Mirtich,et al.  Fast and Accurate Computation of Polyhedral Mass Properties , 1996, J. Graphics, GPU, & Game Tools.

[5]  Ted Belytschko,et al.  A comment on the article ``A finite element method for simulation of strong and weak discontinuities in solid mechanics'' by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523-3540] , 2006 .

[6]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .

[7]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[8]  Peter Bastian,et al.  Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE) , 2010, Kybernetika.

[9]  P. Hansbo,et al.  A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED ON NITSCHE'S METHOD , 2003 .

[10]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[11]  Anders Logg,et al.  Unified framework for finite element assembly , 2009, Int. J. Comput. Sci. Eng..

[12]  Tod A. Laursen,et al.  A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations , 2007 .

[13]  Guillaume Rateau,et al.  The Arlequin method as a flexible engineering design tool , 2005 .

[14]  Raimund Seidel,et al.  On the difficulty of tetrahedralizing 3-dimensional non-convex polyhedra , 1989, SCG '89.

[15]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[16]  David H. Eberly,et al.  Geometric Tools for Computer Graphics , 2002 .

[17]  Ronald Cools,et al.  Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.

[18]  Bernard Chazelle,et al.  Triangulating a nonconvex polytope , 1990, Discret. Comput. Geom..

[19]  Zhaosheng Yu A DLM/FD method for fluid/flexible-body interactions , 2005 .

[20]  Guntram Berti Generic programming for mesh algorithms: Implementing universally usable geometric components pdfauthor , 2002 .

[21]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[22]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[23]  Anders Logg,et al.  Automated Code Generation for Discontinuous Galerkin Methods , 2008, SIAM J. Sci. Comput..

[24]  Alain Fournier,et al.  Triangulating Simple Polygons and Equivalent Problems , 1984, TOGS.

[25]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[26]  Anders Logg,et al.  Efficient representation of computational meshes , 2009, Int. J. Comput. Sci. Eng..

[27]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[28]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[29]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[30]  Martin Sandve Alnæs,et al.  UFL: a finite element form language , 2012 .

[31]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[32]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[33]  Pavel Bochev,et al.  Analysis and computation of a least-squares method for consistent mesh tying . 1 , 2022 .

[34]  Mats G. Larson,et al.  A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary , 2013, Numerische Mathematik.

[35]  Stéphane Bordas,et al.  Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping , 2009 .

[36]  Guntram Berti GrAL--the grid algorithms library , 2006, Future Gener. Comput. Syst..

[37]  Wolfgang A. Wall,et al.  3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach , 2010 .

[38]  Anders Logg,et al.  A compiler for variational forms , 2006, TOMS.

[39]  Sundararajan Natarajan,et al.  Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework , 2010, 1107.4732.

[40]  Oliver Sander,et al.  Infrastructure for the Coupling of Dune Grids , 2010 .

[41]  Anders Logg,et al.  DOLFIN: a C++/Python Finite Element Library , 2012 .

[42]  Tomas Akenine-Möller,et al.  Real-time rendering , 1997 .

[43]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .

[44]  Wolfgang A. Wall,et al.  Interface handling for three‐dimensional higher‐order XFEM‐computations in fluid–structure interaction , 2009 .

[45]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[46]  Martin Rumpf,et al.  Towards a Unified Framework for Scientific Computing , 2005 .

[47]  T. Fries A corrected XFEM approximation without problems in blending elements , 2008 .

[48]  A. Logg Automating the Finite Element Method , 2007, 1112.0433.

[49]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[50]  André Massing,et al.  A stabilized Nitsche overlapping mesh method for the Stokes problem , 2012, Numerische Mathematik.

[51]  Thomas-Peter Fries,et al.  The intrinsic XFEM for two‐fluid flows , 2009 .

[52]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[53]  Anders Logg,et al.  FFC: the FEniCS Form Compiler , 2012 .