A Truly Exact and Optimal Perfect Absorbing Layer for Time-harmonic Acoustic Wave Scattering Problems

In this paper, we design a truly exact and optimal perfect absorbing layer (PAL) for domain truncation of the two-dimensional Helmholtz equation in an unbounded domain with bounded scatterers. This technique is based on a complex compression coordinate transformation in polar coordinates, and a judicious substitution of the unknown field in the artificial layer. Compared with the widely-used perfectly matched layer (PML) methods, the distinctive features of PAL lie in that (i) it is truly exact in the sense that the PAL-solution is identical to the original solution in the bounded domain reduced by the truncation layer; (ii) with the substitution, the PAL-equation is free of singular coefficients and the substituted unknown field is essentially non-oscillatory in the layer; and (iii) the construction is valid for general star-shaped domain truncation. By formulating the variational formulation in Cartesian coordinates, the implementation of this technique using standard spectral-element or finite-element methods can be made easy as a usual coding practice. We provide ample numerical examples to demonstrate that this method is highly accurate, parameter-free and robust for very high wave-number and thin layer. It outperforms the classical PML and the recently advocated PML using unbounded absorbing functions. Moreover, it can fix some flaws of the PML approach.

[1]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[2]  Zhiming Chen,et al.  An adaptive anisotropic perfectly matched layer method for 3-D time harmonic electromagnetic scattering problems , 2013, Numerische Mathematik.

[3]  J. Bérenger Perfectly matched layer for the FDTD solution of wave-structure interaction problems , 1996 .

[4]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[5]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[6]  Steven G. Johnson,et al.  Notes on Perfectly Matched Layers (PMLs) , 2021, ArXiv.

[7]  Zhiming Chen,et al.  An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005, SIAM J. Numer. Anal..

[8]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[9]  Bo Wang,et al.  Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids , 2018, Adv. Comput. Math..

[10]  W. J. Gordon,et al.  Transfinite element methods: Blending-function interpolation over arbitrary curved element domains , 1973 .

[11]  Li-Lian Wang,et al.  A Perfect Absorbing Layer for High-Order Simulation of Wave Scattering Problems , 2017 .

[12]  Maksim Skorobogatiy,et al.  Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Aimé Fournier,et al.  Exact calculation of Fourier series in nonconforming spectral-element methods , 2005, J. Comput. Phys..

[14]  Matti Lassas,et al.  On the existence and convergence of the solution of PML equations , 1998, Computing.

[15]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[16]  Haijun Wu,et al.  FEM and CIP-FEM for Helmholtz Equation with High Wave Number and Perfectly Matched Layer Truncation , 2019, SIAM J. Numer. Anal..

[17]  Zhiming,et al.  An Adaptive Uniaxial Perfectly Matched Layer Method for Time-Harmonic Scattering Problems , 2008 .

[18]  Alfredo Bermúdez,et al.  An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems , 2007, J. Comput. Phys..

[19]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[20]  Jie Shen,et al.  Some Recent Advances on Spectral Methods for Unbounded Domains , 2008 .

[21]  D. Givoli Non-reflecting boundary conditions , 1991 .

[22]  Lilian Wang,et al.  Accurate Simulation of Circular and Elliptic Cylindrical Invisibility Cloaks , 2014, 1404.7812.

[23]  Guo Ben-yu,et al.  Gegenbauer approximation and its applications to differential equations with rough asymptotic behaviors at infinity , 2001 .

[24]  Alfredo Bermúdez,et al.  An Exact Bounded Perfectly Matched Layer for Time-Harmonic Scattering Problems , 2007, SIAM J. Sci. Comput..

[25]  Qing Huo Liu,et al.  A Novel Coupling Algorithm for Perfectly Matched Layer With Wave Equation-Based Discontinuous Galerkin Time-Domain Method , 2018, IEEE Transactions on Antennas and Propagation.

[26]  Dan Givoli,et al.  Comparison of high‐order absorbing boundary conditions and perfectly matched layers in the frequency domain , 2010 .

[27]  I. Singer,et al.  A perfectly matched layer for the Helmholtz equation in a semi-infinite strip , 2004 .

[28]  Matthias Heil,et al.  A parameter-free perfectly matched layer formulation for the finite-element-based solution of the Helmholtz equation , 2015, J. Comput. Phys..

[29]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[30]  Axel Modave,et al.  Optimizing perfectly matched layers in discrete contexts , 2014 .

[31]  Y. Kivshar,et al.  Inside-out electromagnetic cloaking. , 2008, Optics express.

[32]  Wei Yang,et al.  Mathematical Analysis and Finite Element Time Domain Simulation of Arbitrary Star-Shaped Electromagnetic Cloaks , 2018, SIAM J. Numer. Anal..

[33]  S. M. Kirkup,et al.  Solution of Helmholtz Equation in the Exterior Domain by Elementary Boundary Integral Methods , 1995 .

[34]  Charles I. Goldstein,et al.  A Finite Element Method for Solving Heimholt/ Type Equations in Waveguides and Other Unbounded Domains* , 2010 .

[35]  D. Givoli,et al.  High-order non-reflecting boundary scheme for time-dependent waves , 2003 .

[36]  Qing Huo Liu,et al.  Second-order PML: Optimal choice of nth-order PML for truncating FDTD domains , 2015, J. Comput. Phys..

[37]  Feng KASOc,et al.  Finite Element Method and Natural Boundary Reduction , 2010 .

[38]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[39]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[40]  Haijun Wu,et al.  An Adaptive Finite Element Method for the Diffraction Grating Problem with PML and Few-Mode DtN Truncations , 2018, Journal of Scientific Computing.

[41]  Lilian Wang,et al.  Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics , 2015, 1505.03232.

[42]  Qing Huo Liu,et al.  The Auxiliary Differential Equations Perfectly Matched Layers Based on the Hybrid SETD and PSTD Algorithms for Acoustic Waves , 2017 .

[43]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[44]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[45]  Bijan Zakeri,et al.  An optimized hybrid Convolutional Perfectly Matched Layer for efficient absorption of electromagnetic waves , 2018, J. Comput. Phys..

[46]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[47]  Weiying Zheng,et al.  PML Method for Electromagnetic Scattering Problem in a Two-Layer Medium , 2017, SIAM J. Numer. Anal..

[48]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..