Nonribosomal peptide synthetase with a unique iterative-alternative-optional mechanism catalyzes amonabactin synthesis in Aeromonas

[1]  Gabrielle Chataigné,et al.  Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis , 2016, MicrobiologyOpen.

[2]  Y. Dufresne,et al.  Norine: A powerful resource for novel nonribosomal peptide discovery , 2015, Synthetic and systems biotechnology.

[3]  Valérie Leclère,et al.  Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing , 2015, Nucleic Acids Res..

[4]  C. R. Osorio,et al.  Two Catechol Siderophores, Acinetobactin and Amonabactin, Are Simultaneously Produced by Aeromonas salmonicida subsp. salmonicida Sharing Part of the Biosynthetic Pathway. , 2015, ACS chemical biology.

[5]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[6]  M. I. Quiroga,et al.  Acute Aeromonas salmonicida infection in turbot (Scophthalmus maximus L.). Histopathological and immunohistochemical studies , 2014 .

[7]  M. Devignes,et al.  Prediction of Monomer Isomery in Florine: A Workflow Dedicated to Nonribosomal Peptide Discovery , 2014, PloS one.

[8]  M. Figueras,et al.  Aeromonas spp. whole genomes and virulence factors implicated in fish disease. , 2013, Journal of fish diseases.

[9]  T. Funahashi,et al.  Characterization of a Gene Encoding the Outer Membrane Receptor for Ferric Enterobactin in Aeromonas hydrophila ATCC 7966T , 2013, Bioscience, biotechnology, and biochemistry.

[10]  J. Badger,et al.  The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity , 2012, PloS one.

[11]  R. Farto,et al.  Colonization of turbot tissues by virulent and avirulent Aeromonas salmonicida subsp. salmonicida strains during infection. , 2011, Diseases of aquatic organisms.

[12]  Kai Blin,et al.  NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity , 2011, Nucleic Acids Res..

[13]  Gregory Kucherov,et al.  Diversity of Monomers in Nonribosomal Peptides: towards the Prediction of Origin and Biological Activity , 2010, Journal of bacteriology.

[14]  Gitanjali Yadav,et al.  SBSPKS: structure based sequence analysis of polyketide synthases , 2010, Nucleic Acids Res..

[15]  M. Marahiel,et al.  Nonribosomal peptide synthetases: structures and dynamics. , 2010, Current opinion in structural biology.

[16]  S. Abbott,et al.  The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection , 2010, Clinical Microbiology Reviews.

[17]  P. Jacques,et al.  Development of a biological test to evaluate the bioavailability of iron in culture media , 2009, Journal of applied microbiology.

[18]  R. Singh,et al.  The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen , 2008, BMC Genomics.

[19]  C. R. Osorio,et al.  Identification of Siderophore Biosynthesis Genes Essential for Growth of Aeromonas salmonicida under Iron Limitation Conditions , 2008, Applied and Environmental Microbiology.

[20]  Tilmann Weber,et al.  Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution , 2007, BMC Evolutionary Biology.

[21]  D. Haft,et al.  Genome Sequence of Aeromonas hydrophila ATCC 7966T: Jack of All Trades , 2006, Journal of bacteriology.

[22]  G. O’Toole,et al.  Saccharomyces cerevisiae-Based Molecular Tool Kit for Manipulation of Genes from Gram-Negative Bacteria , 2006, Applied and Environmental Microbiology.

[23]  Ben Shen,et al.  Microbial genomics for the improvement of natural product discovery. , 2006, Current opinion in microbiology.

[24]  Hristo Daskalov,et al.  The importance of Aeromonas hydrophila in food safety , 2006 .

[25]  Y. Lau,et al.  Identification and Characterization of Putative Virulence Genes and Gene Clusters in Aeromonas hydrophila PPD134/91 , 2005, Applied and Environmental Microbiology.

[26]  J. Romalde,et al.  A review of the main bacterial fish diseases in mariculture systems , 2005 .

[27]  G. Challis A Widely Distributed Bacterial Pathway for Siderophore Biosynthesis Independent of Nonribosomal Peptide Synthetases , 2005, Chembiochem : a European journal of chemical biology.

[28]  M. Béchet,et al.  Functional significance of a periplasmic Mn‐superoxide dismutase from Aeromonas hydrophila , 2004, Journal of applied microbiology.

[29]  D. Newman,et al.  Genetic identification of a respiratory arsenate reductase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Marahiel,et al.  The dhb Operon of Bacillus subtilisEncodes the Biosynthetic Template for the Catecholic Siderophore 2,3-Dihydroxybenzoate-Glycine-Threonine Trimeric Ester Bacillibactin* , 2001, The Journal of Biological Chemistry.

[31]  V. de Lorenzo,et al.  Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein , 1999, Journal of bacteriology.

[32]  B. Austin,et al.  Bacterial fish pathogens: disease in farmed and wild fish. , 1999 .

[33]  Gerben J. Zylstra,et al.  Plasposons: Modular Self-Cloning Minitransposon Derivatives for Rapid Genetic Analysis of Gram-Negative Bacterial Genomes , 1998, Applied and Environmental Microbiology.

[34]  C. Walsh,et al.  Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. , 1998, Biochemistry.

[35]  K. Raymond,et al.  Amonabactin: a family of novel siderophores from a pathogenic bacterium , 1997, JBIC Journal of Biological Inorganic Chemistry.

[36]  S. Knøchel,et al.  Emerging pathogens: Aeromonas spp. , 1995, International journal of food microbiology.

[37]  J. E. Arceneaux,et al.  Diversity of siderophore genes encoding biosynthesis of 2,3-dihydroxybenzoic acid in Aeromonas spp. , 1994, Biometals.

[38]  Linda M. Tunstad,et al.  Amonabactin: Characterization of a Series of Siderophores from Aeromonas hydrophila , 1994 .

[39]  S. Payne,et al.  Cloning, mutagenesis, and nucleotide sequence of a siderophore biosynthetic gene (amoA) from Aeromonas hydrophila , 1991, Journal of bacteriology.

[40]  J. E. Arceneaux,et al.  Acquisition of iron from host sources by mesophilic Aeromonas species. , 1991, Journal of general microbiology.

[41]  L. Clem,et al.  Amonabactin, a novel tryptophan- or phenylalanine-containing phenolate siderophore in Aeromonas hydrophila , 1989, Journal of bacteriology.

[42]  Jacques Ravel,et al.  Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. , 2009, Methods in enzymology.

[43]  D. Haft,et al.  Genome Sequence of Aeromonas hydrophila ATCC 7966 T : Jack of All Trades (cid:1) , 2006 .

[44]  S. Barghouthi,et al.  Physiological control of amonabactin biosynthesis inAeromonas hydrophila , 2005, Biology of Metals.

[45]  S. Payne,et al.  Detection, isolation, and characterization of siderophores. , 1994, Methods in enzymology.

[46]  J. Neilands,et al.  Universal chemical assay for the detection and determination of siderophores. , 1987, Analytical biochemistry.

[47]  G. Challis A Widely Distributed Bacterial Pathway for Siderophore Biosynthesis Independent of Nonribosomal Peptide Synthetases , 2022 .