Mathematical analysis of transmission properties of electromagnetic meta-materials
暂无分享,去创建一个
Ben Schweizer | Mario Ohlberger | Barbara Verfürth | Maik Urban | Mario Ohlberger | B. Verfürth | B. Schweizer | M. Urban | Maik Urban
[1] E Weinan,et al. The heterogeneous multi-scale method for homogenization problems , 2005 .
[2] Mario Ohlberger,et al. A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..
[3] Sonia Fliss,et al. On the approximation of electromagnetic fields by edge finite elements. Part 2: A heterogeneous multiscale method for Maxwell's equations , 2017, Comput. Math. Appl..
[4] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[5] Assyr Abdulle,et al. On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..
[6] R. Lipton,et al. Effective Maxwell’s Equations for Perfectly Conducting Split Ring Resonators , 2018 .
[7] Steven G. Johnson,et al. All-angle negative refraction without negative effective index , 2002 .
[8] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[9] A. L. Efros,et al. Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability , 2004 .
[11] Guy Bouchitté,et al. Homogenization near resonances and artificial magnetism from dielectrics , 2004 .
[12] Andreas Dedner,et al. A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.
[13] Patrick Henning,et al. Numerical Homogenization of H(curl)-Problems , 2017, SIAM J. Numer. Anal..
[14] M. Hochbruck,et al. Finite Element Heterogeneous Multiscale Method for Time-Dependent Maxwell’s Equations , 2017 .
[15] M. Costabel,et al. Singularities of Maxwell interface problems , 1999 .
[16] Ben Schweizer,et al. A Negative Index Meta-Material for Maxwell's Equations , 2015, SIAM J. Math. Anal..
[17] A. L. Efros,et al. Diffraction theory and focusing of light by a slab of left-handed material ☆ , 2003 .
[18] Guy Bouchitté,et al. Homogenization of a Wire Photonic Crystal: The Case of Small Volume Fraction , 2006, SIAM J. Appl. Math..
[19] Mario Ohlberger,et al. A New Heterogeneous Multiscale Method for the Helmholtz Equation with High Contrast , 2016, Multiscale Model. Simul..
[20] G. Bouchitté,et al. Homogenization Near Resonances and Artificial Magnetism in Three Dimensional Dielectric Metamaterials , 2015, 1512.02463.
[21] K. Cherednichenko,et al. HOMOGENIZATION OF THE SYSTEM OF HIGH-CONTRAST MAXWELL EQUATIONS , 2015 .
[22] Patrick Henning,et al. A New Heterogeneous Multiscale Method for Time-Harmonic Maxwell's Equations , 2015, SIAM J. Numer. Anal..
[23] Guy Bouchitté,et al. Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings , 2013 .
[24] Andreas Dedner,et al. A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.
[25] Barbara Verfurth. Heterogeneous Multiscale Method for the Maxwell equations with high contrast , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.
[26] M. Costabel,et al. Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .
[27] V. H. Hoang,et al. High dimensional finite elements for multiscale Maxwell wave equations , 2017, 1708.01966.
[28] Guy Bouchitté,et al. Homogenization of a set of parallel fibres , 1997 .
[29] Ben Schweizer,et al. Resonance meets homogenization - Construction of meta-materials with astonishing properties , 2017 .
[30] Yanbo Li,et al. Adaptive generalized multiscale finite element methods for H(curl)-elliptic problems with heterogeneous coefficients , 2018, J. Comput. Appl. Math..
[31] Ya Zhang,et al. Multiscale Asymptotic Method for Maxwell's Equations in Composite Materials , 2010, SIAM J. Numer. Anal..
[32] Guy Bouchitté,et al. Homogenization of the 3D Maxwell system near resonances and artificial magnetism , 2009 .
[33] Jean-Luc Guermond,et al. Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains , 2013 .
[34] G. Bouchitté,et al. Multiscale Nanorod Metamaterials and Realizable Permittivity Tensors , 2012 .
[35] Guy Bouchitté,et al. Homogenization of Maxwell's Equations in a Split Ring Geometry , 2010, Multiscale Model. Simul..