Mathematical analysis of transmission properties of electromagnetic meta-materials

We study time-harmonic Maxwell's equations in meta-materials that use either perfect conductors or high-contrast materials. Based on known effective equations for perfectly conducting inclusions, we calculate the transmission and reflection coefficients for four different geometries. For high-contrast materials and essentially two-dimensional geometries, we analyze parallel electric and parallel magnetic fields and discuss their potential to exhibit transmission through a sample of meta-material. For a numerical study, one often needs a method that is adapted to heterogeneous media; we consider here a Heterogeneous Multiscale Method for high contrast materials. The qualitative transmission properties, as predicted by the analysis, are confirmed with numerical experiments. The numerical results also underline the applicability of the multiscale method.

[1]  E Weinan,et al.  The heterogeneous multi-scale method for homogenization problems , 2005 .

[2]  Mario Ohlberger,et al.  A Posteriori Error Estimates for the Heterogeneous Multiscale Finite Element Method for Elliptic Homogenization Problems , 2005, Multiscale Model. Simul..

[3]  Sonia Fliss,et al.  On the approximation of electromagnetic fields by edge finite elements. Part 2: A heterogeneous multiscale method for Maxwell's equations , 2017, Comput. Math. Appl..

[4]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[5]  Assyr Abdulle,et al.  On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..

[6]  R. Lipton,et al.  Effective Maxwell’s Equations for Perfectly Conducting Split Ring Resonators , 2018 .

[7]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .

[8]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[9]  A. L. Efros,et al.  Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability , 2004 .

[11]  Guy Bouchitté,et al.  Homogenization near resonances and artificial magnetism from dielectrics , 2004 .

[12]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[13]  Patrick Henning,et al.  Numerical Homogenization of H(curl)-Problems , 2017, SIAM J. Numer. Anal..

[14]  M. Hochbruck,et al.  Finite Element Heterogeneous Multiscale Method for Time-Dependent Maxwell’s Equations , 2017 .

[15]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[16]  Ben Schweizer,et al.  A Negative Index Meta-Material for Maxwell's Equations , 2015, SIAM J. Math. Anal..

[17]  A. L. Efros,et al.  Diffraction theory and focusing of light by a slab of left-handed material ☆ , 2003 .

[18]  Guy Bouchitté,et al.  Homogenization of a Wire Photonic Crystal: The Case of Small Volume Fraction , 2006, SIAM J. Appl. Math..

[19]  Mario Ohlberger,et al.  A New Heterogeneous Multiscale Method for the Helmholtz Equation with High Contrast , 2016, Multiscale Model. Simul..

[20]  G. Bouchitté,et al.  Homogenization Near Resonances and Artificial Magnetism in Three Dimensional Dielectric Metamaterials , 2015, 1512.02463.

[21]  K. Cherednichenko,et al.  HOMOGENIZATION OF THE SYSTEM OF HIGH-CONTRAST MAXWELL EQUATIONS , 2015 .

[22]  Patrick Henning,et al.  A New Heterogeneous Multiscale Method for Time-Harmonic Maxwell's Equations , 2015, SIAM J. Numer. Anal..

[23]  Guy Bouchitté,et al.  Plasmonic waves allow perfect transmission through sub-wavelength metallic gratings , 2013 .

[24]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.

[25]  Barbara Verfurth Heterogeneous Multiscale Method for the Maxwell equations with high contrast , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[26]  M. Costabel,et al.  Singularities of Electromagnetic Fields¶in Polyhedral Domains , 2000 .

[27]  V. H. Hoang,et al.  High dimensional finite elements for multiscale Maxwell wave equations , 2017, 1708.01966.

[28]  Guy Bouchitté,et al.  Homogenization of a set of parallel fibres , 1997 .

[29]  Ben Schweizer,et al.  Resonance meets homogenization - Construction of meta-materials with astonishing properties , 2017 .

[30]  Yanbo Li,et al.  Adaptive generalized multiscale finite element methods for H(curl)-elliptic problems with heterogeneous coefficients , 2018, J. Comput. Appl. Math..

[31]  Ya Zhang,et al.  Multiscale Asymptotic Method for Maxwell's Equations in Composite Materials , 2010, SIAM J. Numer. Anal..

[32]  Guy Bouchitté,et al.  Homogenization of the 3D Maxwell system near resonances and artificial magnetism , 2009 .

[33]  Jean-Luc Guermond,et al.  Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains , 2013 .

[34]  G. Bouchitté,et al.  Multiscale Nanorod Metamaterials and Realizable Permittivity Tensors , 2012 .

[35]  Guy Bouchitté,et al.  Homogenization of Maxwell's Equations in a Split Ring Geometry , 2010, Multiscale Model. Simul..