Microbial biofilm formation: a need to act

U. R€omling, S. Kjelleberg, S. Normark, L. Nyman, B. E. Uhlin & B. Akerlund From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Singapore Centre on Environmental Life Sciences Engineering, Singapore City, Singapore; The Royal Swedish Academy of Sciences and Karolinska Institutet; Pfizer AB, Stockholm; Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Ume a Centre for Microbial Research, Ume a University, Ume a; and Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska University Hospital, Stockholm, Sweden

[1]  M. Chapman,et al.  Mechanisms of Protein Oligomerization: Inhibitor of Functional Amyloids Templates α-Synuclein Fibrillation , 2012, Journal of the American Chemical Society.

[2]  P. Humphrey,et al.  Detection of Intracellular Bacterial Communities in Human Urinary Tract Infection , 2007, PLoS medicine.

[3]  S. Molin,et al.  Phenotypes of Non-Attached Pseudomonas aeruginosa Aggregates Resemble Surface Attached Biofilm , 2011, PloS one.

[4]  T. D. Yuzvinsky,et al.  Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1 , 2010, Proceedings of the National Academy of Sciences.

[5]  C. Kirschner,et al.  The role of intermolecular interactions: studies on model systems for bacterial biofilms. , 1999, International journal of biological macromolecules.

[6]  K. Nealson,et al.  Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System , 1970, Journal of bacteriology.

[7]  Qian Zhang,et al.  Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins , 2004, Nature Biotechnology.

[8]  S. Rice,et al.  Cephalosporin-3'-diazeniumdiolates: targeted NO-donor prodrugs for dispersing bacterial biofilms. , 2012, Angewandte Chemie.

[9]  J. M. Dow,et al.  Biofilm dispersal in Xanthomonas campestris is controlled by cell–cell signaling and is required for full virulence to plants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  U. Jenal,et al.  Structural and mechanistic determinants of c-di-GMP signalling , 2009, Nature Reviews Microbiology.

[11]  M. Vulić,et al.  Ciprofloxacin Causes Persister Formation by Inducing the TisB toxin in Escherichia coli , 2010, PLoS biology.

[12]  B. Wickes,et al.  Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule , 2002, Applied and Environmental Microbiology.

[13]  Matthew R. Parsek,et al.  Pseudomonas aeruginosa Rugose Small-Colony Variants Have Adaptations That Likely Promote Persistence in the Cystic Fibrosis Lung , 2009, Journal of bacteriology.

[14]  K. Hedlund,et al.  Uropathogenic Escherichia coli Modulates Immune Responses and Its Curli Fimbriae Interact with the Antimicrobial Peptide LL-37 , 2010, PLoS pathogens.

[15]  Alice Dohnalkova,et al.  Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Learn,et al.  Hypochlorite scavenging by Pseudomonas aeruginosa alginate , 1987, Infection and immunity.

[17]  Elizabeth M. Boon,et al.  Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi. , 2012, Biochemistry.

[18]  Michael Y. Galperin,et al.  Cyclic di-GMP: the First 25 Years of a Universal Bacterial Second Messenger , 2013, Microbiology and Molecular Reviews.

[19]  U. Römling,et al.  Biofilm infections, their resilience to therapy and innovative treatment strategies , 2012, Journal of internal medicine.

[20]  D. Sinclair,et al.  Killing by Bactericidal Antibiotics Does Not Depend on Reactive Oxygen Species , 2022 .

[21]  C. Armero,et al.  Antimicrobial Resistance in More than 100,000 Escherichia coli Isolates According to Culture Site and Patient Age, Gender, and Location , 2011, Antimicrobial Agents and Chemotherapy.

[22]  K. Sauer,et al.  NO-Induced Biofilm Dispersion in Pseudomonas aeruginosa Is Mediated by an MHYT Domain-Coupled Phosphodiesterase , 2013, Journal of bacteriology.

[23]  J. Lawrence,et al.  Behavior ofPseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments , 1987, Microbial Ecology.

[24]  S. Kjelleberg,et al.  Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors , 2003, The EMBO journal.

[25]  L. Lindbom,et al.  Induction of the human cathelicidin LL‐37 as a novel treatment against bacterial infections , 2012, Journal of leukocyte biology.

[26]  Zhijian J. Chen,et al.  Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway , 2013, Science.

[27]  D. Hassett,et al.  Nitric Oxide Signaling in Pseudomonas aeruginosa Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic Di-GMP Levels, and Enhanced Dispersal , 2009, Journal of bacteriology.

[28]  Karl-Peter Hopfner,et al.  Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. , 2008, Molecular cell.

[29]  R. Dean,et al.  Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages. , 1988, Journal of general microbiology.

[30]  M. Rohde,et al.  The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix , 2001, Molecular microbiology.

[31]  Robert E W Hancock,et al.  Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. , 2013, Current opinion in microbiology.

[32]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[33]  K. Marshall,et al.  Selective sorption of bacteria from seawater. , 1971, Canadian journal of microbiology.

[34]  Boris Hayete,et al.  Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli , 2007 .

[35]  D. Portnoy,et al.  STING-Dependent Type I IFN Production Inhibits Cell-Mediated Immunity to Listeria monocytogenes , 2014, PLoS pathogens.

[36]  J. Costerton,et al.  Observations of fouling biofilm formation. , 1981, Canadian journal of microbiology.

[37]  M. Hensel,et al.  Biofilm formation by Salmonella enterica serovar Typhimurium colonizing solid tumours , 2011, Cellular microbiology.

[38]  N. Rosenberg,et al.  Periprosthetic Infection Following Total Knee Arthroplasty , 2013 .

[39]  L. Pasteur Mémoire sur la fermentation acétique , 1864 .

[40]  Vincent T. Lee,et al.  Systematic identification of conserved bacterial c-di-AMP receptor proteins , 2013, Proceedings of the National Academy of Sciences.

[41]  Gordon Y C Cheung,et al.  Phenol-soluble modulins--critical determinants of staphylococcal virulence. , 2014, FEMS microbiology reviews.

[42]  N. Høiby,et al.  Pseudomonas aeruginosa biofilms in cystic fibrosis. , 2010, Future microbiology.

[43]  R. Frykberg,et al.  Surgical management of diabetic foot infections and osteomyelitis. , 2007, Clinics in podiatric medicine and surgery.

[44]  E. Nudler,et al.  H2S: A Universal Defense Against Antibiotics in Bacteria , 2011, Science.

[45]  Antoni van Leeuwenhoek,et al.  Antony Van Leeuwenhoek and His 'Little Animals' , 1932, The Indian Medical Gazette.

[46]  S. Hultgren,et al.  Intracellular Bacterial Biofilm-Like Pods in Urinary Tract Infections , 2003, Science.

[47]  P. Kolenbrander,et al.  Lactose-reversible coaggregation between oral actinomycetes and Streptococcus sanguis , 1981, Infection and immunity.

[48]  R. Kolter,et al.  Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili , 1998, Molecular microbiology.

[49]  J. Costerton,et al.  Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm , 2002, Journal of bacteriology.

[50]  A. Camilli,et al.  Cyclic diguanylate (c‐di‐GMP) regulates Vibrio cholerae biofilm formation , 2004, Molecular microbiology.

[51]  S. Dowd,et al.  Chronic wounds and the medical biofilm paradigm. , 2010, Journal of wound care.

[52]  J. Imlay,et al.  High Levels of Intracellular Cysteine Promote Oxidative DNA Damage by Driving the Fenton Reaction , 2003, Journal of bacteriology.

[53]  G. O’Toole,et al.  The developmental model of microbial biofilms: ten years of a paradigm up for review. , 2009, Trends in microbiology.

[54]  Marcus J Schultz,et al.  Biomaterial-Associated Infection: Locating the Finish Line in the Race for the Surface , 2012, Science Translational Medicine.

[55]  D. Amikam,et al.  Elevated expression of the CD4 receptor and cell cycle arrest are induced in Jurkat cells by treatment with the novel cyclic dinucleotide 3′,5′‐cyclic diguanylic acid , 1999, FEBS letters.

[56]  S. Molin,et al.  Development and Dynamics of Pseudomonassp. Biofilms , 2000, Journal of bacteriology.

[57]  N. Høiby,et al.  Targeting quorum sensing in Pseudomonas aeruginosa biofilms: current and emerging inhibitors. , 2013, Future microbiology.

[58]  Jeremy S. Webb,et al.  Nitric oxide‐mediated dispersal in single‐ and multi‐species biofilms of clinically and industrially relevant microorganisms , 2009, Microbial biotechnology.

[59]  U. Römling,et al.  GGDEF and EAL domains inversely regulate cyclic di‐GMP levels and transition from sessility to motility , 2004, Molecular microbiology.

[60]  K. Lewis Platforms for antibiotic discovery , 2013, Nature Reviews Drug Discovery.

[61]  H. Stiver,et al.  Inhibition of polymorphonuclear leukocyte chemotaxis by the mucoid exopolysaccharide of Pseudomonas aeruginosa. , 1988, Clinical and investigative medicine. Medecine clinique et experimentale.

[62]  Ralph Mitchell,et al.  Mechanism of the Initial Events in the Sorption of Marine Bacteria to Surfaces , 1970 .

[63]  S. Bezrukov,et al.  Persister‐promoting bacterial toxin TisB produces anion‐selective pores in planar lipid bilayers , 2012, FEBS letters.

[64]  W. Zimmerli,et al.  Diagnosis of Periprosthetic Joint Infections in Clinical Practice , 2012, The International journal of artificial organs.

[65]  K. Lewis,et al.  Specialized Persister Cells and the Mechanism of Multidrug Tolerance in Escherichia coli , 2004, Journal of bacteriology.

[66]  N. Høiby,et al.  A personal history of research on microbial biofilms and biofilm infections. , 2014, Pathogens and disease.

[67]  S. Rice,et al.  Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. , 2014, Current pharmaceutical design.

[68]  U. Römling,et al.  Control of pathogen growth and biofilm formation using a urinary catheter that releases antimicrobial nitrogen oxides. , 2013, Free radical biology & medicine.

[69]  J. Collins,et al.  Mistranslation of Membrane Proteins and Two-Component System Activation Trigger Antibiotic-Mediated Cell Death , 2008, Cell.

[70]  A. Hanssen,et al.  Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[71]  M. Rohde,et al.  Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. , 2007, Environmental microbiology.

[72]  W. Zimmerli,et al.  Clinical presentation and treatment of orthopaedic implant‐associated infection , 2014, Journal of internal medicine.

[73]  J. Nickel,et al.  Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material , 1985, Antimicrobial Agents and Chemotherapy.

[74]  V. Korolik,et al.  Inhibition of Bacterial Biofilm Formation and Swarming Motility by a Small Synthetic Cationic Peptide , 2012, Antimicrobial Agents and Chemotherapy.

[75]  Thomas Bjarnsholt,et al.  Towards diagnostic guidelines for biofilm-associated infections. , 2012, FEMS immunology and medical microbiology.

[76]  B. Ersbøll,et al.  Quantification of biofilm structures by the novel computer program COMSTAT. , 2000, Microbiology.

[77]  D. Stickler,et al.  Bacterial biofilms in patients with indwelling urinary catheters , 2008, Nature Clinical Practice Urology.

[78]  D. Hassett,et al.  Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[79]  M. Rohde,et al.  Murine solid tumours as a novel model to study bacterial biofilm formation in vivo , 2014, Journal of internal medicine.

[80]  H. Sondermann,et al.  Sensing the messenger: The diverse ways that bacteria signal through c‐di‐GMP , 2012, Protein science : a publication of the Protein Society.

[81]  N. Høiby Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. A survey. , 1977, Acta pathologica et microbiologica Scandinavica. Supplement.

[82]  J. H. Boom,et al.  Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid , 1987, Nature.

[83]  C. Guzmán,et al.  Cyclic di‐nucleotides: new era for small molecules as adjuvants , 2012, Microbial biotechnology.

[84]  Richard D. Smith,et al.  Activated ClpP kills persisters and eradicates a chronic biofilm infection , 2013, Nature.

[85]  Gordon Y C Cheung,et al.  Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. , 2011, The Journal of clinical investigation.

[86]  Michael Y. Galperin,et al.  New metrics for comparative genomics. , 2006, Current opinion in biotechnology.

[87]  J. Helmann,et al.  Analysis of the role of Bacillus subtilis σM in β‐lactam resistance reveals an essential role for c‐di‐AMP in peptidoglycan homeostasis , 2012, Molecular microbiology.

[88]  N. Høiby Pseudomonas aeruginosa infection in cystic fibrosis. Relationship between mucoid strains of Pseudomonas aeruginosa and the humoral immune response. , 2009 .

[89]  K. Gerdes,et al.  RETRACTED: (p)ppGpp Controls Bacterial Persistence by Stochastic Induction of Toxin-Antitoxin Activity , 2013, Cell.

[90]  F. Yildiz,et al.  Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis , 2010, Microbiology.

[91]  Paul Stoodley,et al.  Bacterial biofilms: from the Natural environment to infectious diseases , 2004, Nature Reviews Microbiology.

[92]  J W Costerton,et al.  How bacteria stick. , 1978, Scientific American.

[93]  M. Hentzer,et al.  Dynamics and Spatial Distribution of β-Lactamase Expression in Pseudomonas aeruginosa Biofilms , 2004, Antimicrobial Agents and Chemotherapy.

[94]  E. Wagner,et al.  Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis , 2010, The EMBO journal.

[95]  A. Henrici Studies of Freshwater Bacteria , 1933, Journal of bacteriology.

[96]  J. Mattick,et al.  Extracellular DNA required for bacterial biofilm formation. , 2002, Science.

[97]  K. Lewis,et al.  Persister cells. , 2010, Annual review of microbiology.

[98]  G L Kenyon,et al.  Structural identification of autoinducer of Photobacterium fischeri luciferase. , 1981, Biochemistry.

[99]  Kshitij D Modi,et al.  Noninvasive Biophotonic Imaging for Monitoring of Catheter-Associated Urinary Tract Infections and Therapy in Mice , 2005, Infection and Immunity.

[100]  E. O’Shea,et al.  A serine sensor for multicellularity in a bacterium , 2013, eLife.

[101]  H. Vlamakis,et al.  Sticking together: building a biofilm the Bacillus subtilis way , 2013, Nature Reviews Microbiology.

[102]  J. Mekalanos,et al.  Cyclic Dinucleotides and the Innate Immune Response , 2013, Cell.

[103]  D. Mack,et al.  Molecular basis of intercellular adhesion in the biofilm‐forming Staphylococcus epidermidis , 1996, Molecular microbiology.

[104]  B. Giese,et al.  Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. , 2004, Genes & development.

[105]  H. Sahl,et al.  Dysregulation of bacterial proteolytic machinery by a new class of antibiotics , 2005, Nature Medicine.

[106]  R. Breaker,et al.  Riboswitches in eubacteria sense the second messenger c-di-AMP , 2013, Nature chemical biology.

[107]  Anders Folkesson,et al.  Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective , 2012, Nature Reviews Microbiology.

[108]  M. Parsek,et al.  Bacterial biofilms: an emerging link to disease pathogenesis. , 2003, Annual review of microbiology.

[109]  R. Vance,et al.  The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. , 2013, Cell reports.

[110]  W. Sierralta,et al.  Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter , 1998, Molecular microbiology.

[111]  S. Kjelleberg,et al.  Cell Death in Pseudomonas aeruginosa Biofilm Development , 2003, Journal of bacteriology.

[112]  M J Bissell,et al.  How does the extracellular matrix direct gene expression? , 1982, Journal of theoretical biology.

[113]  A. Oliver,et al.  ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. , 2015, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[114]  J. Collins,et al.  A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics , 2007, Cell.

[115]  F. Yildiz,et al.  Structural Characterization of the Extracellular Polysaccharide from Vibrio cholerae O1 El-Tor , 2014, PloS one.

[116]  A. Hirschberg,et al.  Estrogen Supports Urothelial Defense Mechanisms , 2013, Science Translational Medicine.

[117]  T. Lithgow,et al.  MrkH, a Novel c-di-GMP-Dependent Transcriptional Activator, Controls Klebsiella pneumoniae Biofilm Formation by Regulating Type 3 Fimbriae Expression , 2011, PLoS pathogens.

[118]  A. Mitchell,et al.  Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo , 2006, PLoS pathogens.

[119]  Michael Y. Galperin,et al.  Diversity of structure and function of response regulator output domains. , 2010, Current opinion in microbiology.

[120]  M. Chapman,et al.  Promiscuous Cross-seeding between Bacterial Amyloids Promotes Interspecies Biofilms* , 2012, The Journal of Biological Chemistry.

[121]  P. Larock,et al.  An extraterrestrial habitat on earth: The algal mat of Don Jaun Pond , 1983 .

[122]  T. Wood,et al.  Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)‐4‐bromo‐5‐(bromomethylene)‐3‐butyl‐2(5H)‐furanone , 2002, Letters in applied microbiology.

[123]  Fitnat H. Yildiz,et al.  Molecular Architecture and Assembly Principles of Vibrio cholerae Biofilms , 2012, Science.

[124]  Roger E. Bumgarner,et al.  Gene expression in Pseudomonas aeruginosa biofilms , 2001, Nature.

[125]  J. Costerton,et al.  Bacterial biofilms: a common cause of persistent infections. , 1999, Science.

[126]  C. E. Zobell,et al.  The Significance of Marine Bacteria in the Fouling of Submerged Surfaces , 1935, Journal of bacteriology.

[127]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[128]  R. Hancock,et al.  Human Host Defense Peptide LL-37 Prevents Bacterial Biofilm Formation , 2008, Infection and Immunity.

[129]  H. Lilie,et al.  The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease , 2009, EMBO molecular medicine.

[130]  N. Zenkin,et al.  Molecular mechanism of bacterial persistence by HipA. , 2013, Molecular cell.

[131]  K. Nealson,et al.  Shewanella oneidensis MR-1 chemotaxis proteins and electron-transport chain components essential for congregation near insoluble electron acceptors. , 2012, Biochemical Society transactions.

[132]  Timothy K Lu,et al.  Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy , 2009, Proceedings of the National Academy of Sciences.

[133]  Yasuhiko Irie,et al.  Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa , 2012, Proceedings of the National Academy of Sciences.

[134]  D. Lebeaux,et al.  A Rat Model of Central Venous Catheter to Study Establishment of Long-Term Bacterial Biofilm and Related Acute and Chronic Infections , 2012, PloS one.

[135]  Leo Eberl,et al.  Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. , 2002, Microbiology.

[136]  James J. Collins,et al.  Metabolite-Enabled Eradication of Bacterial Persisters by Aminoglycosides , 2011, Nature.

[137]  Philip S. Stewart,et al.  Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of Pseudomonas aeruginosa Biofilms to Ciprofloxacin and Tobramycin , 2003, Antimicrobial Agents and Chemotherapy.

[138]  K. Gerdes,et al.  Bacterial persistence by RNA endonucleases , 2011, Proceedings of the National Academy of Sciences.

[139]  A. Mitchell,et al.  Genetic control of Candida albicans biofilm development , 2011, Nature Reviews Microbiology.

[140]  D. Otzen,et al.  Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation , 2013, MicrobiologyOpen.

[141]  D. Lebeaux,et al.  From in vitro to in vivo Models of Bacterial Biofilm-Related Infections , 2013, Pathogens.

[142]  A. Spiers,et al.  Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces , 2003, Molecular ecology.

[143]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[144]  M. Chapman,et al.  Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. , 2009, Nature chemical biology.

[145]  Tami D. Lieberman,et al.  Targeting pan-resistant bacteria with antibodies to a broadly conserved surface polysaccharide expressed during infection. , 2012, The Journal of infectious diseases.