Comparison between AVIRIS and Hyperion for Hyperspectral Mineral Mapping

1.0 Introduction The 0.4 to 2.5 μm spectral range provides abundant information about many important Earth-surface minerals (Clark et al., 1990). In particular, the 2.0 to 2.5 μm spectral range covers spectral features of hydroxyl-bearing minerals, sulfates, and carbonates common to many geologic units and hydrothermal alteration assemblages. Imaging Spectrometers, or “Hyperspectral” sensors provide the unique combination of both spatially contiguous spectra and spectrally contiguous images of the Earth’s surface that allows spatial mapping of these minerals (Goetz et al., 1985). Airborne hyperspectral data have been available to researchers since the early 1980s and their use for mineral mapping is well established (Goetz et al., 1985; Kruse and Lefkoff, 1993; Boardman and Kruse, 1994; Boardman et al., 1995; Kruse, et al., 1999). Current airborne sensors provide high-spatial resolution (2–20 m), highspectral resolution (10–20 nm), and high SNR (>500:1) data for a variety of scientific disciplines (Green et al., 2001; Kruse et al., 2000).

[1]  J. Boardman,et al.  Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer , 1990 .

[2]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[3]  J. Boardman,et al.  Leveraging the High Dimensionality of AVIRIS Data for improved Sub-Pixel Target i Unmixing and Rejection of False Positives : Mixture Tuned Matched Filtering , 1998 .

[4]  J. W. Boardman,et al.  FIFTEEN YEARS OF HYPERSPECTRAL DATA: NORTHERN GRAPEVINE MOUNTAINS, NEVADA , 1999 .

[5]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .

[6]  Wallace M. Porter,et al.  A System Overview Of The Airborne Visible/Infrared Imaging Spectrometer (Aviris) , 1987, Optics & Photonics.

[7]  A. B. Lefkoff,et al.  Expert system-based mineral mapping in northern death valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1993 .

[8]  F. Kruse Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California , 1988 .

[9]  G. Swayze The hydrothermal and structural history of the Cuprite mining district, southwestern Nevada: An integrated geological and geophysical approach , 1997 .

[10]  J. D. Dykstra,et al.  Analysis of AIS Data of the Recluse Oil Field, Recluse, Wyoming , 1985 .

[11]  Fred A. Kruse,et al.  Knowledge‐based geologic mapping with imaging spectrometers , 1994 .

[12]  Anne B. Kahle,et al.  Mapping of hydrothermal alteration in the Cuprite mining district, Nevada, using aircraft scanner images for the spectral region 0.46 to 2.36µm , 1977 .

[13]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[14]  S. J. Sutley,et al.  Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada , 1992 .

[15]  Environmental Research Institute of Michigan (ERIM) , 1996 .

[16]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[17]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[18]  J. W. Boardman,et al.  Characterization and mapping of kimberlites and related diatremes using hyperspectral remote sensing , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[19]  Michael Abrams,et al.  Alteration mapping using multispectral images; Cuprite mining district, Esmeralda County, Nevada , 1980 .

[20]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[21]  Fred A. Kruse,et al.  Comparison of EO-1 Hyperion and airborne hyperspectral remote sensing data for geologic applications , 2002, Proceedings, IEEE Aerospace Conference.

[22]  A. B. Lefkoff,et al.  The AIG/HyVista 1999 USA HyMap Group Shoot: overview and analysis examples , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[23]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[24]  John B. Adams,et al.  Detectability of minerals on desert alluvial fans using reflectance spectra , 1987 .