Hessian Eigenfunctions for Triangular Mesh Parameterization

Hessian Locally Linear Embedding (HLLE) is an algorithm that computes the nullspace of a Hessian functional H for Dimensionality Reduction (DR) of a sampled manifold M. This article presents a variation of classic HLLE for parameterization of 3D triangular meshes. Contrary to classic HLLE which estimates local Hessian nullspaces, the proposed approach follows intuitive ideas from Differential Geometry where the local Hessian is estimated by quadratic interpolation and a partition of unity is used to join all neighborhoods. In addition, local average triangle normals are used to estimate the tangent plane TxM at x 2 M instead of PCA, resulting in local parameterizations which reflect better the geometry of the surface and perform better when the mesh presents sharp features. A high frequency dataset (Brain) is used to test our algorithm resulting in a higher rate of success (96:63%) compared to classic HLLE (76:4%).

[1]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[2]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Hongyuan Zha,et al.  Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2002, ArXiv.

[4]  Yunjin Lee,et al.  Mesh parameterization with a virtual boundary , 2002, Comput. Graph..

[5]  Hans-Peter Seidel,et al.  Linear angle based parameterization , 2007, Symposium on Geometry Processing.

[6]  Edwin R. Hancock,et al.  Quasi-isometric parameterization for texture mapping , 2008, Pattern Recognit..

[7]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[8]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[9]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[11]  Ioannis Fudos,et al.  Efficient computation of constrained parameterizations on parallel platforms , 2013, Comput. Graph..

[12]  Alla Sheffer,et al.  Mesh parameterization: theory and practice Video files associated with this course are available from the citation page , 2007, SIGGRAPH Courses.

[13]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[14]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[15]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[16]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[17]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[18]  Oscar E. Ruiz,et al.  Triangular mesh parameterization with trimmed surfaces , 2015 .

[19]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[20]  Hans-Peter Seidel,et al.  A fast and simple stretch-minimizing mesh parameterization , 2004, Proceedings Shape Modeling Applications, 2004..

[21]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[22]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.