SymPy: Symbolic computing in Python

55 SymPy is an open source computer algebra system written in pure Python. It is built with a focus on extensibility and ease of use, through both interactive and programmatic applications. These characteristics have led SymPy to become a popular symbolic library for the scientific Python ecosystem. This paper presents the architecture of SymPy, a description of its features, and a discussion of select domain specific submodules. The supplementary materials provide additional examples and further outline details of the architecture and features of SymPy. 56

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  Aruna Raja,et al.  Domain Specific Languages , 2010 .

[3]  Kelly Roach,et al.  Hypergeometric function representations , 1996, ISSAC '96.

[4]  Richard N. Zare,et al.  Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics , 1988 .

[5]  B. Svaiter,et al.  Group-Theoretic Approach for Symbolic Tensor Manipulation , 2001, math-ph/0107032.

[6]  M. Hubbard,et al.  Symbolic linearization of equations of motion of constrained multibody systems , 2015 .

[7]  C. Tai Generalized Vector and Dyadic Analysis: Applied Mathematics in Field Theory , 1991 .

[8]  Janet Hope,et al.  Open Source Licensing , 2004 .

[9]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[10]  Xiaoye S. Li,et al.  A Comparison of Three High-Precision Quadrature Schemes , 2003, Exp. Math..

[11]  Kasper Peeters,et al.  Cadabra: a field-theory motivated symbolic computer algebra system , 2006, Comput. Phys. Commun..

[12]  S. Lang,et al.  Introduction to Transcendental Numbers , 1967 .

[13]  Gerald Jay Sussman,et al.  Functional Differential Geometry , 2013 .

[14]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[15]  Raytcho D. Lazarov,et al.  Higher-order finite element methods , 2005, Math. Comput..

[16]  J. Faugère A new efficient algorithm for computing Gröbner bases (F4) , 1999 .

[17]  Mark Lutz,et al.  Learning Python , 1999 .

[18]  Mont Hubbard,et al.  Constrained Multibody Dynamics With Python: From Symbolic Equation Generation to Publication , 2013 .

[19]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[20]  P. Zweifel Advanced Mathematical Methods for Scientists and Engineers , 1980 .

[21]  Mark Sofroniou,et al.  Precise numerical computation , 2005, J. Log. Algebraic Methods Program..

[22]  Andrew M. Stuart,et al.  A First Course in Continuum Mechanics: Bibliography , 2008 .

[23]  A. Zahariev Google App Engine , 2009 .

[24]  Robert Cimrman SfePy - Write Your Own FE Application , 2014, ArXiv.

[25]  Zhenbing Zeng,et al.  Automated and readable simplification of trigonometric expressions , 2006, Math. Comput. Model..

[26]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[27]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[28]  Mary Shaw,et al.  Software architecture - perspectives on an emerging discipline , 1996 .

[29]  David H. Bailey,et al.  Analysis of PSLQ, an integer relation finding algorithm , 1999, Math. Comput..

[30]  David Joyner,et al.  SAGE: system for algebra and geometry experimentation , 2005, SIGS.

[31]  K. Roach Meijer G function representations , 1997, ISSAC.

[32]  Françoise Delon,et al.  Formal power series , 1996, Annals of Mathematics and Artificial Intelligence.

[33]  Jacques Carette,et al.  Understanding expression simplification , 2004, ISSAC '04.

[34]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .

[35]  R. W. Gosper Decision procedure for indefinite hypergeometric summation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Jean-Michel Muller,et al.  Modern Computer Arithmetic , 2016, Computer.

[37]  Thomas R. Kane,et al.  THEORY AND APPLICATIONS , 1984 .

[38]  Manuel Bronstein,et al.  Symbolic integration I: transcendental functions , 1997 .

[39]  Martin Quack Angular Momentum: Understanding Spatial Aspects in chemistry and Physics. Von R. N. Zare. Wiley, New York 1988. XI, 349 S., geb., $ 39.95. – ISBN 0‐471‐85892‐7 , 1989 .

[40]  Dominik Wolfgang Gruntz,et al.  On computing limits in a symbolic manipulation system , 1996 .

[41]  Andy R. Terrel,et al.  Symbolic Statistics with SymPy , 2012, Computing in Science & Engineering.

[42]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[43]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[44]  Davide P. Cervone,et al.  Math Jax: a platform for mathematics on the web , 2012 .

[45]  M. Norman,et al.  yt: A MULTI-CODE ANALYSIS TOOLKIT FOR ASTROPHYSICAL SIMULATION DATA , 2010, 1011.3514.

[46]  Richard J. Fateman,et al.  A Review of Mathematica , 1992, J. Symb. Comput..

[47]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[48]  Albert Nijenhuis,et al.  Combinatorial Algorithms for Computers and Calculators , 1978 .