Path-dependent equations and viscosity solutions in infinite dimension

Path Dependent PDE's (PPDE's) are natural objects to study when one deals with non Markovian models. Recently, after the introduction (see [12]) of the so-called pathwise (or functional or Dupire) calculus, various papers have been devoted to study the well-posedness of such kind of equations, both from the point of view of regular solutions (see e.g. [18]) and viscosity solutions (see e.g. [13]), in the case of finite dimensional underlying space. In this paper, motivated by the study of models driven by path dependent stochastic PDE's, we give a first well-posedness result for viscosity solutions of PPDE's when the underlying space is an infinite dimensional Hilbert space. The proof requires a substantial modification of the approach followed in the finite dimensional case. We also observe that, differently from the finite dimensional case, our well-posedness result, even in the Markovian case, apply to equations which cannot be treated, up to now, with the known theory of viscosity solutions.

[1]  S. Sritharan,et al.  Bellman equations associated to the optimal feedback control of stochastic Navier‐Stokes equations , 2005 .

[2]  Rama Cont,et al.  Functional Ito calculus and stochastic integral representation of martingales , 2010, 1002.2446.

[3]  Nizar Touzi,et al.  On viscosity solutions of path dependent PDEs , 2011, 1109.5971.

[4]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Optimal Stopping and Free-Boundary Problems , 2006 .

[5]  F. Russo,et al.  Generalized covariation for Banach valued processes and Itô formula , 2010 .

[6]  Rama Cont,et al.  Change of variable formulas for non-anticipative functionals on path space ✩ , 2010, 1004.1380.

[7]  N. Touzi,et al.  Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II , 2012, 1210.0007.

[8]  M. Rosestolato Functional Itō calculus in Hilbert spaces and application to path-dependent Kolmogorov equations , 2016, 1606.06326.

[9]  Francesco Russo,et al.  Generalized covariation and extended Fukushima decompositions for Banach valued processes. Application to windows of Dirichlet processes. , 2011, 1105.4419.

[10]  Fausto Gozzi,et al.  Hamilton–Jacobi–Bellman Equations for the Optimal Control of the Duncan–Mortensen–Zakai Equation☆☆☆ , 2000 .

[11]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[12]  P. Lions Viscosity solutions of fully nonlinear second order equations and optimal stochastic control in infinite dimensions. Part II: Optimal control of Zakai's equation , 1989 .

[13]  M. Renardy Polar decomposition of positive operators and a problem of crandall and lions , 1995 .

[14]  P. Lions Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. III. Uniqueness of viscosity solutions for general second-order equations , 1989 .

[15]  G. Tessitore,et al.  Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control , 2002 .

[16]  P. Lions Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: the case of bounded stochastic evolutions , 1988 .

[17]  Fu Zhang,et al.  Path-Dependent Optimal Stochastic Control and Viscosity Solution of Associated Bellman Equations , 2012, 1210.2078.

[18]  Marco Fuhrman,et al.  Università di Milano – Bicocca Quaderni di Matematica Stochastic equations with delay : optimal control via BSDEs and regular solutions of Hamilton-Jacobi-Bellman equations , 2008 .

[19]  Bruno Dupire,et al.  Functional Itô Calculus , 2009 .

[20]  M. Rosestolato Path-Dependent SDEs in Hilbert Spaces , 2016, Springer Proceedings in Mathematics & Statistics.

[21]  Andrzej Świe,et al.  \unbounded" Second Order Partial Differential Equations in Infinite Dimensional Hilbert Spaces , 2007 .

[22]  F. Flandoli,et al.  An infinite-dimensional approach to path-dependent Kolmogorov equations , 2013, 1312.6165.

[23]  Rama Cont,et al.  A functional extension of the Ito formula , 2010 .

[24]  F. Masiero Regularizing Properties for Transition Semigroups and Semilinear Parabolic Equations in Banach Spaces , 2007 .

[25]  Francesco Russo,et al.  A regularization approach to functional Itô calculus and strong-viscosity solutions to path-dependent PDEs , 2014, 1401.5034.

[26]  Leszek Gawarecki,et al.  Stochastic Differential Equations in Infinite Dimensions , 2011 .

[27]  Erhan Bayraktar,et al.  Stochastic Perron's method and verification without smoothness using viscosity comparison: The linear case , 2012 .

[28]  Elisabeth Rouy,et al.  Second Order Hamilton--Jacobi Equations in Hilbert Spaces and Stochastic Boundary Control , 2000, SIAM J. Control. Optim..

[29]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[30]  Y. Fujita,et al.  Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: the case of bounded stochastic evolutions , 2006 .

[31]  S. Peng,et al.  Backward stochastic differential equations and quasilinear parabolic partial differential equations , 1992 .

[32]  Zhenjie Ren Viscosity Solutions of Fully Nonlinear Elliptic Path Dependent PDEs , 2014, 1401.5210.

[33]  Francesco Russo,et al.  Generalized covariation for Banach space valued processes, Itô formula and applications , 2010, 1012.2484.

[34]  Nizar Touzi,et al.  Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I , 2016 .

[35]  Francesco Russo,et al.  Functional Itô versus Banach space stochastic calculus and strict solutions of semilinear path-dependent equations , 2015, 1505.02926.

[36]  S. Federico,et al.  Mild solutions of semilinear elliptic equations in Hilbert spaces , 2016, 1604.00793.

[37]  Salvatore Federico,et al.  A stochastic control problem with delay arising in a pension fund model , 2011, Finance Stochastics.

[38]  Paul Malliavin,et al.  Integration and Probability , 1995, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[39]  M. K rn,et al.  Stochastic Optimal Control , 1988 .

[40]  Kelome,et al.  Viscosity Solutions of an Infinite-Dimensional Black—Scholes—Barenblatt Equation , 2003 .

[41]  S. Mohammed Stochastic functional differential equations , 1984 .

[42]  Zhenjie Ren,et al.  Comparison of Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Path-Dependent PDEs , 2015, SIAM J. Math. Anal..

[43]  Giuseppe Da Prato,et al.  Second Order Partial Differential Equations in Hilbert Spaces: Bibliography , 2002 .