Semilocal and global convergence of the Newton‐HSS method for systems of nonlinear equations

Newton-HSS methods, which are variants of inexact Newton methods different from the Newton–Krylov methods, have been shown to be competitive methods for solving large sparse systems of nonlinear equations with positive-definite Jacobian matrices (J. Comp. Math. 2010; 28:235–260). In that paper, only local convergence was proved. In this paper, we prove a Kantorovich-type semilocal convergence. Then we introduce Newton-HSS methods with a backtracking strategy and analyse their global convergence. Finally, these globally convergent Newton-HSS methods are shown to work well on several typical examples using different forcing terms to stop the inner iterations. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[2]  Graham F. Carey,et al.  On the numerical solution of two-point singularly perturbed boundary value problems , 1985 .

[3]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[4]  Ioannis K. Argyros Local convergence of inexact Newton-like-iterative methods and applications , 2000 .

[5]  Werner C. Rheinboldt,et al.  Methods for Solving Systems of Nonlinear Equations: Second Edition , 1998 .

[6]  Homer F. Walker,et al.  NITSOL: A Newton Iterative Solver for Nonlinear Systems , 1998, SIAM J. Sci. Comput..

[7]  Guo,et al.  ON SEMILOCAL CONVERGENCE OF INEXACT NEWTON METHODS , 2007 .

[8]  Owe Axelsson,et al.  Avoiding slave points in an adaptive refinement procedure for convection-diffusion problems in 2D , 1998, Computing.

[9]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[10]  Stefania Bellavia,et al.  A Hybrid Newton-GMRES Method for Solving Nonlinear Equations , 2000, NAA.

[11]  Bai,et al.  A REGULARIZED CONJUGATE GRADIENT METHOD FOR SYMMETRIC POSITIVE DEFINITE SYSTEM OF LINEAR EQUATIONS , 2002 .

[12]  Chong Li,et al.  Kantorovich-type convergence criterion for inexact Newton methods , 2009 .

[13]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[14]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[15]  Guo Xue On the convergence of Newton's method in Banach space. , 2000 .

[16]  T. Ypma,et al.  Convergence of Newton-like-iterative methods , 1984 .

[17]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[18]  A. H. Sherman On Newton-Iterative Methods for the Solution of Systems of Nonlinear Equations , 1978 .

[19]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[20]  Stefania Bellavia,et al.  A Globally Convergent Newton-GMRES Subspace Method for Systems of Nonlinear Equations , 2001, SIAM J. Sci. Comput..

[21]  Yousef Saad,et al.  Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..

[22]  Daniel B. Szyld,et al.  Block and asynchronous two-stage methods for mildly nonlinear systems , 1999, Numerische Mathematik.

[23]  Zhong-Zhi Bai,et al.  A class of two‐stage iterative methods for systems of weakly nonlinear equations , 1997, Numerical Algorithms.

[24]  Z. Bai,et al.  A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations , 2007 .

[25]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[26]  Márcia A. Gomes-Ruggiero,et al.  A globally convergent inexact Newton method with a new choice for the forcing term , 2007, Ann. Oper. Res..

[27]  Zhong-zhi,et al.  ON NEWTON-HSS METHODS FOR SYSTEMS OF NONLINEAR EQUATIONS WITH POSITIVE-DEFINITE JACOBIAN MATRICES , 2010 .