Minimum Cost Data Aggregation with Localized Processing for Statistical Inference

The problem of minimum cost in-network fusion of measurements, collected from distributed sensors via multihop routing is considered. A designated fusion center performs an optimal statistical-inference test on the correlated measurements, drawn from a Markov random field. Conditioned on the delivery of a sufficient statistic for inference to the fusion center, the structure of optimal routing and fusion is shown to be a Steiner tree on a transformed graph. This Steiner-tree reduction preserves the approximation ratio, which implies that any Sterner- tree approximation can be employed for minimum cost fusion with the same approximation ratio. The proposed fusion scheme involves routing packets of two types viz., raw measurements sent for local processing, and aggregates obtained on combining these processed values. The performance of heuristics for minimum cost fusion are evaluated through theory and simulations, showing a significant saving in routing costs, when compared to routing all the raw measurements to the fusion center.

[1]  Wei Hong,et al.  TinyDB: an acquisitional query processing system for sensor networks , 2005, TODS.

[2]  Vishnu Navda,et al.  Efficient gathering of correlated data in sensor networks , 2008, TOSN.

[3]  L. Tong,et al.  Detection of Gauss-Markov Random Fields under Routing Energy Constraint , 2007 .

[4]  Martin Vetterli,et al.  On the optimal density for real-time data gathering of spatio-temporal processes in sensor networks , 2005, IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005..

[5]  Anthony N. Pettitt,et al.  A Conditional Autoregressive Gaussian Process for Irregularly Spaced Multivariate Data with Application to Modelling Large Sets of Binary Data , 2002, Stat. Comput..

[6]  Pramod K. Varshney,et al.  Data-aggregation techniques in sensor networks: a survey , 2006, IEEE Communications Surveys & Tutorials.

[7]  Lang Tong,et al.  Application Dependent Shortest Path Routing in Ad‐Hoc Sensor Networks , 2007 .

[8]  J. G. Gander,et al.  An introduction to signal detection and estimation , 1990 .

[9]  Johannes Gehrke,et al.  Query Processing in Sensor Networks , 2003, CIDR.

[10]  Anna Scaglione,et al.  On the Interdependence of Routing and Data Compression in Multi-Hop Sensor Networks , 2002, MobiCom '02.

[11]  Xiang-Yang Li,et al.  Algorithmic, geometric and graphs issues in wireless networks , 2003, Wirel. Commun. Mob. Comput..

[12]  Lang Tong,et al.  Cooperative routing for distributed detection in large sensor networks , 2007, IEEE Journal on Selected Areas in Communications.

[13]  Alex Zelikovsky,et al.  Tighter Bounds for Graph Steiner Tree Approximation , 2005, SIAM J. Discret. Math..

[14]  Martin J. Wainwright,et al.  Distributed fusion in sensor networks: a graphical models perspective , 2006 .

[15]  Deborah Estrin,et al.  Directed diffusion: a scalable and robust communication paradigm for sensor networks , 2000, MobiCom '00.

[16]  Mohamed F. Younis,et al.  A survey on routing protocols for wireless sensor networks , 2005, Ad Hoc Networks.

[17]  Krishna M. Sivalingam,et al.  A Survey of Energy Efficient Network Protocols for Wireless Networks , 2001, Wirel. Networks.

[18]  J. M. Hammersley,et al.  Markov fields on finite graphs and lattices , 1971 .

[19]  J. Yukich,et al.  Limit theory for random sequential packing and deposition , 2002 .

[20]  Cyrus Shahabi,et al.  The Clustered AGgregation (CAG) technique leveraging spatial and temporal correlations in wireless sensor networks , 2007, TOSN.

[21]  Wei Hong,et al.  Model-Driven Data Acquisition in Sensor Networks , 2004, VLDB.

[22]  Volker Stix,et al.  Finding All Maximal Cliques in Dynamic Graphs , 2004, Comput. Optim. Appl..

[23]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[24]  Baltasar Beferull-Lozano,et al.  On network correlated data gathering , 2004, IEEE INFOCOM 2004.

[25]  Alan Willsky,et al.  Learning Graphical Models for Hypothesis Testing , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[26]  A.S. Willsky,et al.  An approximate dynamic programming approach to a communication constrained sensor management problem , 2005, 2005 7th International Conference on Information Fusion.

[27]  L. Devroye THE EXPECTED SIZE OF SOME GRAPHS IN COMPUTATIONAL GEOMETRY , 1988 .

[28]  Kyomin Jung,et al.  Approximate message-passing inference algorithm , 2007, 2007 IEEE Information Theory Workshop.

[29]  Deborah Estrin,et al.  Modelling Data-Centric Routing in Wireless Sensor Networks , 2002 .

[30]  Guohong Cao,et al.  Optimizing tree reconfiguration for mobile target tracking in sensor networks , 2004, IEEE INFOCOM 2004.

[31]  David Eppstein,et al.  All maximal independent sets and dynamic dominance for sparse graphs , 2004, TALG.

[32]  Alan S. Willsky,et al.  Inference with Minimal Communication: a Decision-Theoretic Variational Approach , 2005, NIPS.

[33]  Konstantinos Psounis,et al.  Modeling spatially correlated data in sensor networks , 2006, TOSN.

[34]  Gabriele Reich,et al.  Beyond Steiner's Problem: A VLSI Oriented Generalization , 1989, WG.

[35]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[36]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[37]  Alex Zelikovsky,et al.  Improved Steiner tree approximation in graphs , 2000, SODA '00.

[38]  Roger Wattenhofer,et al.  Gathering correlated data in sensor networks , 2004, DIALM-POMC '04.

[39]  George Michailidis,et al.  Local Vote Decision Fusion for Target Detection in Wireless Sensor Networks , 2008, IEEE Transactions on Signal Processing.

[40]  JAMAL N. AL-KARAKI,et al.  Routing techniques in wireless sensor networks: a survey , 2004, IEEE Wireless Communications.

[41]  Arvind Giridhar,et al.  In‐Network Information Processing in Wireless Sensor Networks , 2007 .

[42]  Mingyan Liu,et al.  On the Many-to-One Transport Capacity of a Dense Wireless Sensor Network and the Compressibility of Its Data , 2003, IPSN.

[43]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[44]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[45]  Kun-Mao Chao,et al.  Spanning trees and optimization problems , 2004, Discrete mathematics and its applications.

[46]  Martin Vetterli,et al.  Network correlated data gathering with explicit communication: NP-completeness and algorithms , 2006, IEEE/ACM Transactions on Networking.

[47]  Martin Vetterli,et al.  Network correlated data gathering with explicit communication: NP-completeness and algorithms , 2006 .

[48]  Deborah Estrin,et al.  Simultaneous Optimization for Concave Costs: Single Sink Aggregation or Single Source Buy-at-Bulk , 2003, SODA '03.

[49]  Panganamala Ramana Kumar,et al.  Toward a theory of in-network computation in wireless sensor networks , 2006, IEEE Communications Magazine.

[50]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[51]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[52]  Anantha P. Chandrakasan,et al.  An application-specific protocol architecture for wireless microsensor networks , 2002, IEEE Trans. Wirel. Commun..