L2 Extension of ∂̄-closed forms from a hypersurface
暂无分享,去创建一个
[1] Dror Varolin. Three variations on a theme in complex analytic geometry , 2010 .
[2] Vincent Koziarz. Extensions with estimates of cohomology classes , 2010, 1006.4957.
[3] Dror Varolin. A Takayama-type extension theorem , 2006, Compositio Mathematica.
[4] Dror Varolin,et al. Analytic inversion of adjunction: L^2 extension theorems with gain , 2006, math/0607322.
[5] B. Berndtsson,et al. The ¯∂-equation on a positive current , 2002 .
[6] Y. Siu. Invariance of plurigenera , 1997, alg-geom/9712016.
[7] T. Ohsawa. On the extension ofL2 holomorphic functions III: negligible weights , 1995 .
[8] T. Ohsawa. ON THE EXTENSION OF L2 HOLOMORPHIC FUNCTIONS IV: A NEW DENSITY CONCEPT , 1994 .
[9] T. Ohsawa,et al. On the extension ofL2 holomorphic functions , 1987 .
[10] Hilary A. Priestley,et al. Introduction to Complex Analysis , 1985 .
[11] Katrin Baumgartner,et al. Introduction To Complex Analysis In Several Variables , 2016 .
[12] B. Berndtsson. $L^{2}$-extension of $\bar{\partial}$-closed form , 2012 .
[13] Y. Siu. Extension of Twisted Pluricanonical Sections with Plurisubharmonic Weight and Invariance of Semipositively Twisted Plurigenera for Manifolds Not Necessarily of General Type , 2002 .
[14] J. Demailly. On the Ohsawa-Takegoshi-Manivel L 2 extension theorem , 2000 .
[15] J. McNeal. On large values of $L^2$ holomorphic functions , 1996 .
[16] B. Berndtsson. The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman , 1996 .
[17] Y. Siu. The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi , 1995 .
[18] L. Manivel. Un théorème de prolongementL2 de sections holomorphes d'un fibré hermitien , 1993 .
[19] J. Demailly. Estimations $\mathrm {L}^2$ pour l’opérateur $\bar{\partial }$ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète , 1982 .