L2 Extension of ∂̄-closed forms from a hypersurface

[1]  Dror Varolin Three variations on a theme in complex analytic geometry , 2010 .

[2]  Vincent Koziarz Extensions with estimates of cohomology classes , 2010, 1006.4957.

[3]  Dror Varolin A Takayama-type extension theorem , 2006, Compositio Mathematica.

[4]  Dror Varolin,et al.  Analytic inversion of adjunction: L^2 extension theorems with gain , 2006, math/0607322.

[5]  B. Berndtsson,et al.  The ¯∂-equation on a positive current , 2002 .

[6]  Y. Siu Invariance of plurigenera , 1997, alg-geom/9712016.

[7]  T. Ohsawa On the extension ofL2 holomorphic functions III: negligible weights , 1995 .

[8]  T. Ohsawa ON THE EXTENSION OF L2 HOLOMORPHIC FUNCTIONS IV: A NEW DENSITY CONCEPT , 1994 .

[9]  T. Ohsawa,et al.  On the extension ofL2 holomorphic functions , 1987 .

[10]  Hilary A. Priestley,et al.  Introduction to Complex Analysis , 1985 .

[11]  Katrin Baumgartner,et al.  Introduction To Complex Analysis In Several Variables , 2016 .

[12]  B. Berndtsson $L^{2}$-extension of $\bar{\partial}$-closed form , 2012 .

[13]  Y. Siu Extension of Twisted Pluricanonical Sections with Plurisubharmonic Weight and Invariance of Semipositively Twisted Plurigenera for Manifolds Not Necessarily of General Type , 2002 .

[14]  J. Demailly On the Ohsawa-Takegoshi-Manivel L 2 extension theorem , 2000 .

[15]  J. McNeal On large values of $L^2$ holomorphic functions , 1996 .

[16]  B. Berndtsson The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman , 1996 .

[17]  Y. Siu The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi , 1995 .

[18]  L. Manivel Un théorème de prolongementL2 de sections holomorphes d'un fibré hermitien , 1993 .

[19]  J. Demailly Estimations $\mathrm {L}^2$ pour l’opérateur $\bar{\partial }$ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète , 1982 .