THE INTRINSIC EXTREME ULTRAVIOLET FLUXES OF F5 V TO M5 V STARS

Extreme ultraviolet (EUV) radiations (10-117 nm) from host stars play important roles in the ionization, heating, and mass loss from exoplanet atmospheres. Together with the host star's Lyα and far-UV (117-170 nm) radiation, EUV radiation photodissociates important molecules, thereby changing the chemistry in exoplanet atmospheres. Since stellar EUV fluxes cannot now be measured and interstellar neutral hydrogen completely obscures stellar radiation between 40 and 91.2 nm, even for the nearest stars, we must estimate the unobservable EUV flux by indirect methods. New non-LTE semiempirical models of the solar chromosphere and corona and solar irradiance measurements show that the ratio of EUV flux in a variety of wavelength bands to the Lyα flux varies slowly with the Lyα flux and thus with the magnetic heating rate. This suggests and we confirm that solar EUV/Lyα flux ratios based on the models and observations are similar to the available 10-40 nm flux ratios observed with the Extreme Ultraviolet Explorer (EUVE) satellite and the 91.2-117 nm flux observed with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite for F5 V-M5 V stars. We provide formulae for predicting EUV flux ratios based on the EUVE and FUSE stellar data and on the solar models, which are essential input for modeling the atmospheres of exoplanets.

[1]  S. Hawley,et al.  The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. , 2010, Astrobiology.

[2]  J. Kasting Evolution of a habitable planet , 2003 .

[3]  R. D. Robinson,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Late-Type Dwarf Stars , 2002 .

[4]  Kevin France,et al.  COMPUTING INTRINSIC LYα FLUXES OF F5 V TO M5 V STARS , 2013, 1301.5711.

[5]  H. Lammer,et al.  Probing the blow-off criteria of hydrogen-rich 'super-Earths' , 2012, 1210.0793.

[6]  Juan M. Fontenla,et al.  SEMIEMPIRICAL MODELS OF THE SOLAR ATMOSPHERE. III. SET OF NON-LTE MODELS FOR FAR-ULTRAVIOLET/EXTREME-ULTRAVIOLET IRRADIANCE COMPUTATION , 2009 .

[7]  T. Ayres Evolution of the solar ionizing flux , 1997 .

[8]  A. Dupree,et al.  A Far-Ultraviolet Spectroscopic Survey of Luminous Cool Stars , 2004, astro-ph/0412539.

[9]  H. Lichtenegger,et al.  Mass loss of “Hot Jupiters”—Implications for CoRoT discoveries. Part I: The importance of magnetospheric protection of a planet against ion loss caused by coronal mass ejections , 2007 .

[10]  J. Waite,et al.  Atmospheres in the solar system : comparative aeronomy , 2002 .

[11]  Norman Murray,et al.  ATMOSPHERIC ESCAPE FROM HOT JUPITERS , 2008, 0811.0006.

[12]  “Hot Jupiters” , 2006 .

[13]  S. Lepri,et al.  SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS , 2013 .

[14]  Gary J. Rottman,et al.  Solar EUV Experiment (SEE): Mission overview and first results , 2005 .

[15]  Ignasi Ribas,et al.  Loss of water from Mars: Implications for the oxidation of the soil , 2003 .

[16]  I. Ribas,et al.  Estimation of the XUV radiation onto close planets and their evaporation , 2011, 1105.0550.

[17]  David A. Crotser,et al.  Solar cycle minimum measurements of the solar extreme ultraviolet spectral irradiance on 14 April 2008 , 2009 .

[18]  David J. Sahnow,et al.  High‐resolution FUV spectroscopy of the terrestrial day airglow with the Far Ultraviolet Spectroscopic Explorer , 2001 .

[19]  S. Bowyer,et al.  A Time-resolved Extreme-Ultraviolet Spectroscopic Study of the Quiescent and Flaring Corona of the Flare Star AU Microscopii , 1996 .

[20]  Stellar Lyα Emission Lines in the Hubble Space Telescope Archive: Intrinsic Line Fluxes and Absorption from the Heliosphere and Astrospheres* , 2005, astro-ph/0503372.

[21]  et al,et al.  Overview of the Far Ultraviolet Spectroscopic Explorer Mission , 2000, astro-ph/0005529.

[22]  William E. McClintock,et al.  Solar Irradiance Reference Spectra (SIRS) for the 2008 Whole Heliosphere Interval (WHI) , 2008 .

[23]  N. Achilleos,et al.  IONIZATION OF EXTRASOLAR GIANT PLANET ATMOSPHERES , 2010 .

[24]  O. Siegmund,et al.  Extreme Ultraviolet Explorer Deep Survey Observations of a Large Flare on AU Microscopii , 1993 .

[25]  D. S. Bloomfield,et al.  A Comparative Study of Flaring Loops in Active Stars , 2006 .

[26]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[27]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[28]  I. Mueller-Wodarg,et al.  Comparative aeronomy in the solar system , 2003 .

[29]  J. Linsky,et al.  Excitation and ionization of helium in the solar atmosphere , 1976 .

[30]  S. Redfield,et al.  The Structure of the Local Interstellar Medium. V. Electron Densities , 2008, 0804.1802.

[31]  Ch. Helling,et al.  Prospects for detection of exoplanet magnetic fields through bow‐shock observations during transits , 2010, 1011.3455.

[32]  S. Solomon,et al.  Hydrodynamic planetary thermosphere model: 2. Coupling of an electron transport/energy deposition model , 2008 .

[33]  E. Shkolnik AN ULTRAVIOLET INVESTIGATION OF ACTIVITY ON EXOPLANET HOST STARS , 2013, 1301.6192.

[34]  W. McClintock,et al.  Solar–Stellar Irradiance Comparison Experiment II (Solstice II): Instrument Concept and Design , 2005 .

[35]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[36]  Michael S. Bessell,et al.  The β Pictoris Moving Group , 2001 .

[37]  T. Ayres StarCAT: A CATALOG OF SPACE TELESCOPE IMAGING SPECTROGRAPH ULTRAVIOLET ECHELLE SPECTRA OF STARS , 2010 .

[38]  J. Vial,et al.  Solar hydrogen-Lyman continuum observations with SOHO/SUMER , 2005 .

[39]  Usa,et al.  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj EVOLUTION OF THE SOLAR ACTIVITY OVER TIME AND EFFECTS ON PLANETARY ATMOSPHERES: I. HIGH-ENERGY IRRADIANCES (1–1700 A) , 2004 .

[40]  G. P. D. Mello,et al.  EVOLUTION OF THE SOLAR ACTIVITY OVER TIME AND EFFECTS ON PLANETARY ATMOSPHERES. II. κ1 Ceti, AN ANALOG OF THE SUN WHEN LIFE AROSE ON EARTH , 2010, 1003.3561.

[41]  E. Guinan,et al.  The effect of tidal locking on the magnetospheric and atmospheric evolution of ``Hot Jupiters'' , 2004 .

[42]  A. Dupree,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Coronal Forbidden Lines in Late‐Type Stars , 2002, astro-ph/0211363.

[43]  H. Lammer,et al.  THREE-DIMENSIONAL GAS DYNAMIC SIMULATION OF THE INTERACTION BETWEEN THE EXOPLANET WASP-12b AND ITS HOST STAR , 2012, 1212.2779.

[44]  Palermo,et al.  The Structure of Stellar Coronae in Active Binary Systems , 2002, astro-ph/0210652.

[45]  James F. Kasting,et al.  A PHOTOCHEMICAL MODEL FOR THE CARBON-RICH PLANET WASP-12b , 2011, 1110.2793.

[46]  Kevin France,et al.  THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS , 2012, 1212.4833.

[47]  Yuk L. Yung,et al.  High-temperature Photochemistry in the Atmosphere of HD 189733b , 2010 .

[48]  Drake Deming,et al.  A reappraisal of the habitability of planets around M dwarf stars. , 2006, Astrobiology.

[49]  R. Malina,et al.  The Extreme Ultraviolet Explorer Stellar Spectral Atlas , 1997 .

[50]  Juan M. Fontenla,et al.  High‐resolution solar spectral irradiance from extreme ultraviolet to far infrared , 2011 .

[51]  S. Seager,et al.  Exoplanet Atmospheres , 2010 .

[52]  G. Vasisht,et al.  THERMOCHEMICAL AND PHOTOCHEMICAL KINETICS IN COOLER HYDROGEN-DOMINATED EXTRASOLAR PLANETS: A METHANE-POOR GJ436b? , 2011, 1104.3183.

[53]  I. Ribas,et al.  THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 μm: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES , 2012 .

[54]  E. Parker Dynamics of the Interplanetary Gas and Magnetic Fields , 1958 .

[55]  H. De Sterck,et al.  Transonic Hydrodynamic Escape of Hydrogen from Extrasolar Planetary Atmospheres , 2005 .

[56]  Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog , 2006, astro-ph/0607235.

[57]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES , 2012, 1210.6885.

[58]  Claude J. Allègre,et al.  The age of the Earth , 1995 .

[59]  R. Freedman,et al.  CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b , 2012, The Astrophysical journal.

[60]  Roger V. Yelle,et al.  Aeronomy of extra-solar giant planets at small orbital distances , 2003 .

[61]  J. Linsky,et al.  FAR-ULTRAVIOLET CONTINUUM EMISSION: APPLYING THIS DIAGNOSTIC TO THE CHROMOSPHERES OF SOLAR-MASS STARS , 2011, 1109.5653.

[62]  S. Bowyer,et al.  Extreme Ultraviolet Astronomy , 1991 .

[63]  L. Kaltenegger,et al.  MODEL SPECTRA OF THE FIRST POTENTIALLY HABITABLE SUPER-EARTH—Gl581d , 2011, 1103.2953.

[64]  Jeffrey L. Linsky,et al.  The Structure of the Local Interstellar Medium. IV. Dynamics, Morphology, Physical Properties, and Implications of Cloud-Cloud Interactions , 2007, 0709.4480.

[65]  A. Muñoz,et al.  Physical and chemical aeronomy of HD 209458b , 2007 .

[66]  J. B. Joyce,et al.  On-Orbit Performance of the Far Ultraviolet Spectroscopic Explorer Satellite , 2000 .