The Erdős – Szekeres Theorem : Upper Bounds and Related Results

Let ES(n) denote the least integer such that among any ES(n) points in general position in the plane there are always n in convex position. In 1935, P. Erdős and G. Szekeres showed that ES(n) exists and ES(n) ≤ ` 2n−4 n−2 ́ + 1. Six decades later, the upper bound was slightly improved by Chung and Graham, a few months later it was further improved by Kleitman and Pachter, and another few months later it was further improved by the present authors. Here we review the original proof of Erdős and Szekeres, the improvements, and finally we combine the methods of the first and third improvements to obtain yet another tiny improvement. We also briefly review some of the numerous results and problems related to the Erdős–Szekeres theorem.

[1]  E. Groves A Dissertation ON , 1928 .

[2]  Heiko Harborth Konvexe Fünfecke in ebenen Punktmengen. , 1978 .

[3]  J. Horton Sets with No Empty Convex 7-Gons , 1983, Canadian Mathematical Bulletin.

[4]  Knut Dehnhardt Leere konvexe Vielecke in ebenen Punktmengen , 1987 .

[5]  T. Bisztriczky,et al.  A generalization of the Erdös-Szekeres convex n-gon theorem. , 1989 .

[6]  Tibor Bisztriczky,et al.  Convexly independent sets , 1990, Comb..

[7]  Jj Anos Pach Erd} Os-szekeres-type Theorems for Segments and Non-crossing Convex Sets , 1998 .

[8]  Géza Tóth,et al.  Note on the Erdos - Szekeres Theorem , 1998, Discret. Comput. Geom..

[9]  Lior Pachter,et al.  Finding Convex Sets Among Points in the Plane , 1998, Discret. Comput. Geom..

[10]  Pavel Valtr,et al.  A Positive Fraction Erdos - Szekeres Theorem , 1998, Discret. Comput. Geom..

[11]  János Pach,et al.  Canonical Theorems for Convex Sets , 1998, Discret. Comput. Geom..

[12]  Fan Chung Graham,et al.  Forced Convex n -Gons in the Plane , 1998, Discret. Comput. Geom..

[13]  János Pach,et al.  A Generalization of the Erdos - Szekeres Theorem to Disjoint Convex Sets , 1998, Discret. Comput. Geom..

[14]  Gary Gordon,et al.  Convexity and the Beta Invariant , 1999, Discret. Comput. Geom..

[15]  János Pach,et al.  Erdős–Szekeres-Type Theorems for Segments and Noncrossing Convex Sets , 2000 .

[16]  Imre Bárány,et al.  Problems and Results around the Erdös-Szekeres Convex Polygon Theorem , 2000, JCDCG.

[17]  Géza Tóth Finding Convex Sets in Convex Position , 2000, Comb..

[18]  V. Soltan,et al.  The Erdos-Szekeres problem on points in convex position – a survey , 2000 .

[19]  I. Bárány,et al.  Problems and results around the Erdos-Szekeres Theorem , 2001 .

[20]  Pavel Valtr,et al.  The Partitioned Version of the Erdős—Szekeres Theorem , 2002, Discret. Comput. Geom..

[21]  Mark H. Overmars Finding Sets of Points without Empty Convex 6-Gons , 2003, Discret. Comput. Geom..

[22]  Attila Póor A Partitioned Version of the Erdös–Szekeres Theorem for Quadrilaterals , 2003, Discret. Comput. Geom..

[23]  G. Fejes Tóth PLANAR POINT SETS WITH A SMALL NUMBER OF EMPTY CONVEX POLYGONS , 2004 .

[24]  Micha Sharir,et al.  On empty convex polygons in a planar point set , 2006, J. Comb. Theory, Ser. A.

[25]  Esther E. Klein,et al.  On some extremum problems in elementary geometry , 2006 .

[26]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.