Localization for random CMV matrices

We prove Anderson localization (AL) and dynamical localization in expectation (EDL, also known as strong dynamical localization) for random CMV matrices for arbitrary distribution of i.i.d. Verblunsky coefficients.

[1]  SOME UNIFORM ESTIMATES IN PRODUCTS OF RANDOM MATRICES , 1999 .

[2]  Lingrui Ge,et al.  Exponential dynamical localization in expectation for the one dimensional Anderson model , 2020 .

[3]  Helge Krueger Orthogonal Polynomials on the Unit Circle with Verblunsky Coefficients defined by the Skew-Shift , 2011, 1111.4019.

[4]  D. Damanik,et al.  Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent , 2017, Transactions of the American Mathematical Society.

[5]  Barry Simon,et al.  Subharmonicity of the Lyaponov index , 1983 .

[6]  Lyapunov exponents for unitary Anderson models , 2006, math-ph/0611081.

[7]  Barry Simon,et al.  OPUC on one foot , 2005, math/0502485.

[8]  H. Furstenberg,et al.  Random matrix products and measures on projective spaces , 1983 .

[9]  S. Jitomirskaya,et al.  Large Deviations of the Lyapunov Exponent and Localization for the 1D Anderson Model , 2018, Communications in Mathematical Physics.

[10]  Emile Le Page,et al.  Théorèmes limites pour les produits de matrices aléatoires , 1982 .

[11]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[12]  Nishant Rangamani Exponential Dynamical Localization for Random Word Models , 2019, Annales Henri Poincaré.

[13]  R. Carmona,et al.  Spectral Theory of Random Schrödinger Operators , 1990 .

[14]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[15]  Nishant Rangamani Singular-unbounded random Jacobi matrices , 2019, Journal of Mathematical Physics.

[16]  V. Totik,et al.  Orthogonal Polynomials : from Jacobi to Simon ∗ , 2005 .

[17]  P. Bougerol,et al.  Products of Random Matrices with Applications to Schrödinger Operators , 1985 .

[18]  Sasha Sodin,et al.  Anderson localisation for quasi-one-dimensional random operators , 2021 .

[19]  Exponential Dynamical Localization for the Almost Mathieu Operator , 2012, 1208.2674.

[20]  P. Nevai,et al.  Szegő Difference Equations, Transfer Matrices¶and Orthogonal Polynomials on the Unit Circle , 2001 .

[21]  Fengpeng Wang A formula related to CMV matrices and Szegő cocycles , 2018, Journal of Mathematical Analysis and Applications.

[22]  Barry Simon,et al.  CMV matrices: Five years after , 2006, math/0603093.

[23]  René Carmona,et al.  Anderson localization for Bernoulli and other singular potentials , 1987 .

[24]  J. Kingman Subadditive Ergodic Theory , 1973 .

[25]  Leandro Moral,et al.  Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .