Recent Progress of Surface Plasmon–Enhanced Light Trapping in GaAs Thin-Film Solar Cells

[1]  Qinghui Pan,et al.  Enhanced Photoelectric Responsivity of Bilayer Graphene/GaAs Photodetector Using Plasmon Resonance Grating Structures , 2022, Optik.

[2]  J. M. Ulloa,et al.  Self-assembled metal-oxide nanoparticles on GaAs: infrared absorption enabled by localized surface plasmons , 2021 .

[3]  Gurjit Singh,et al.  Plasmonic Effects of Al Nanoparticles Embedded and Non-embedded in Thin Film GaAs Solar Cells with Ta2O5 Antireflective Coating , 2021, Plasmonics.

[4]  A. Mahros,et al.  Plasmon-Enhanced Sunlight Harvesting in Thin-Film Solar Cell by Randomly Distributed Nanoparticle Array , 2021, Materials.

[5]  Gurjit Singh,et al.  Plasmonic periodic nanostructures for enhanced photovoltaic response in thin film GaAs solar cells , 2020 .

[6]  Shobhit K. Patel,et al.  Numerical investigation of graphene-based efficient and broadband metasurface for terahertz solar absorber , 2019, Journal of Materials Science.

[7]  Shisheng Lin,et al.  A synergetic enhancement of localized surface plasmon resonance and photo-induced effect for graphene/GaAs photodetector , 2019, Nanotechnology.

[8]  N. Wu,et al.  A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications , 2019, Nanophotonics.

[9]  Christophe Dupuis,et al.  A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror , 2019, Nature Energy.

[10]  M. Noman,et al.  Efficient Light Management in Ultrathin Crystalline GaAs Solar Cell Based on Plasmonic Square Nanoring Arrays , 2019, Plasmonics.

[11]  Gurjit Singh,et al.  Plasmon enhanced light trapping in thin film GaAs solar cells by Al nanoparticle array , 2019, Physics Letters A.

[12]  Sheng-Qing Zhu,et al.  Enhancement in Power Conversion Efficiency of GaAs Solar Cells by Utilizing Gold Nanostar Film for Light-Trapping , 2019, Front. Chem..

[13]  Saber H. Zainud-Deen,et al.  Absorption Enhancement of GaAs Thin-Film Solar Cells Using Tapered Metal Nanoantenna Structures , 2019, Wirel. Pers. Commun..

[14]  Cheng Yang,et al.  Asymmetric metasurface structures for light absorption enhancement in thin film silicon solar cell , 2019, Journal of Optics.

[15]  M. Noman,et al.  Light absorption enhancement in tri-layered composite metasurface absorber for solar cell applications , 2018, Optical Materials.

[16]  M. Tahir,et al.  An Optimal Au Grating Structure for Light Absorption in Amorphous Silicon Thin Film Solar Cell , 2018, Plasmonics.

[17]  Gurjit Singh,et al.  Optimized size and period of Al nanoparticles for thin film GaAs solar cells , 2018 .

[18]  F. Dimroth,et al.  III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration , 2018 .

[19]  Gurjit Singh,et al.  Enhanced efficiency of thin film GaAs solar cells with plasmonic metal nanoparticles , 2018 .

[20]  Haiyan Wang,et al.  Design and analysis of light trapping in thin-film gallium arsenide solar cells using an efficient hybrid nanostructure , 2017 .

[21]  Jian-feng Li,et al.  High performance graphene/semiconductor van der Waals heterostructure optoelectronic devices , 2017 .

[22]  Wei Wang,et al.  Enhancement of optical absorption in silicon thin-film solar cells with metal nanoparticles , 2017 .

[23]  Gurjit Singh,et al.  Cu Nanoparticle Plasmons to Enhance GaAs Solar Cell Efficiency , 2016 .

[24]  Jian-feng Li,et al.  Stable 16.2% Efficient Surface Plasmon‐Enhanced Graphene/GaAs Heterostructure Solar Cell , 2016 .

[25]  P. Mandal,et al.  Progress in plasmonic solar cell efficiency improvement: A status review , 2016 .

[26]  Jingwu Zheng,et al.  Plasmonic metasurface for light absorption enhancement in GaAs thin film , 2016, Plasmonics.

[27]  H. Heidarzadeh,et al.  Plasmon-enhanced performance of an ultrathin silicon solar cell using metal-semiconductor core-shell hemispherical nanoparticles and metallic back grating. , 2016, Applied optics.

[28]  Fuhua Yang,et al.  Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping Structure , 2016 .

[29]  T. Iqbal,et al.  Coupling Efficiency of Surface Plasmon Polaritons for 1D Plasmonic Gratings: Role of Under- and Over-Milling , 2016, Plasmonics.

[30]  S. K. Lee,et al.  AuAg bimetallic nonalloyed nanoparticles on a periodically nanostructured GaAs substrate for enhancing light trapping. , 2015, Optics letters.

[31]  Z. Zhu,et al.  Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping , 2015, Scientific Reports.

[32]  Abul K. Azad,et al.  Metasurface Broadband Solar Absorber , 2015, Scientific Reports.

[33]  Wenchao Chen,et al.  18.5% efficient graphene/GaAs van der Waals heterostructure solar cell , 2015 .

[34]  Mehdi Heydari,et al.  Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section , 2015 .

[35]  Cheng Sun,et al.  A Design of Thin Film Silicon Solar Cells Based on Silver Nanoparticle Arrays , 2015, Plasmonics.

[36]  Yong-Hang Zhang,et al.  Non-Lambertian Reflective Back Scattering and Its Impact on Device Performance of Ultrathin GaAs Single-Junction Solar Cells , 2015, IEEE Journal of Photovoltaics.

[37]  Krishanu Shome,et al.  Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both. , 2015, Optics express.

[38]  Joshua M. Pearce,et al.  Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics , 2014, Scientific Reports.

[39]  Long Zhou,et al.  Study of thin-film GaAs solar cells with cylindrical Ag nanoparticles and distributed Bragg reflector , 2014 .

[40]  H. Sodabanlu,et al.  Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes , 2013, Scientific Reports.

[41]  Gang Chen,et al.  Plasmonic materials for energy: From physics to applications , 2013, 1310.6949.

[42]  B. Jia,et al.  Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets , 2013, Light: Science & Applications.

[43]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[44]  Xiaodong Wang,et al.  Long-range-ordered Ag nanodot arrays grown on GaAs substrate using nanoporous alumina mask , 2013 .

[45]  Harry A. Atwater,et al.  Highly efficient GaAs solar cells by limiting light emission angle , 2013, Light: Science & Applications.

[46]  Rusli,et al.  Design principles for plasmonic thin film GaAs solar cells with high absorption enhancement , 2012 .

[47]  Arturo A. Ayon,et al.  Nanostructured thin film silicon solar cells efficiency improvement using gold nanoparticles , 2012 .

[48]  Min Gu,et al.  Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells , 2012 .

[49]  J. Teng,et al.  Optical coupling of surface plasmons between graphene sheets , 2012 .

[50]  Lucia Calliari,et al.  Plasmonic Scattering by Metal Nanoparticles for Solar Cells , 2012, Plasmonics.

[51]  Jinmin Li,et al.  Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. , 2012, Optics express.

[52]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[53]  H. Misawa,et al.  Plasmon-induced local photocurrent changes in GaAs photovoltaic cells modified with gold nanospheres: A near-field imaging study , 2011 .

[54]  J. S. Sekhon,et al.  Cu, CuO, and Cu2O Nanoparticle Plasmons for Enhanced Scattering in Solar Cells , 2011 .

[55]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[56]  F. Lederer,et al.  Approaching the Lambertian limit in randomly textured thin-film solar cells. , 2011, Optics express.

[57]  S. Kurtz,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2011, IEEE Journal of Photovoltaics.

[58]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[59]  Jonathan Grandidier,et al.  Light Absorption Enhancement in Thin‐Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres , 2011, Advanced materials.

[60]  Jinmin Li,et al.  Surface plasmon enhanced GaAs thin film solar cells , 2011 .

[61]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[62]  Federico Capasso,et al.  Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. , 2010, Nano letters.

[63]  Y. Akimov,et al.  Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells , 2010, Nanotechnology.

[64]  Albert Polman,et al.  Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells , 2010 .

[65]  Tristan L. Temple,et al.  Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells , 2009 .

[66]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[67]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[68]  Ludovic Escoubas,et al.  Improving light absorption in organic solar cells by plasmonic contribution , 2009 .

[69]  Chen Nuo-fu,et al.  Ag surface plasmon enhanced double-layer antireflection coatings for GaAs solar cells , 2009 .

[70]  Y. Akimov,et al.  Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. , 2009, Optics express.

[71]  Albert Polman,et al.  Tunable light trapping for solar cells using localized surface plasmons , 2009 .

[72]  Y. Su,et al.  Efficiency enhancement in GaAs solar cells using self-assembled microspheres. , 2009, Optics express.

[73]  Harry A. Atwater,et al.  Plasmonic nanoparticle enhanced light absorption in GaAs solar cells , 2008 .

[74]  M. Engelhard,et al.  Controlling size of gold clusters in polyaniline from top–down and from bottom–up , 2008 .

[75]  Harry A. Atwater,et al.  Surface plasmon enhanced photocurrent in thin GaAs solar cells , 2008, Optics + Photonics for Sustainable Energy.

[76]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[77]  George C. Schatz,et al.  Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography , 2007 .

[78]  Daniel Derkacs,et al.  Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles , 2007 .

[79]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[80]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[81]  H. Lüth,et al.  Raman scattering study of GaN nanostructures obtained by bottom-up and top-down approaches , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[82]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[83]  Kenji Araki,et al.  Multi-junction III-V solar cells: current status and future potential , 2005 .

[84]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[85]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[86]  Martin A. Green,et al.  Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .

[87]  Bernhard Lamprecht,et al.  Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering , 2002 .

[88]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[89]  Dennis G. Hall,et al.  Island size effects in nanoparticle-enhanced photodetectors , 1998 .

[90]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[91]  Saburo Adachi,et al.  Physical Properties of III-V Semiconductor Compounds , 1992 .

[92]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[93]  Victor Henrich,et al.  Applied Physics , 1924, Nature.

[94]  Gaas And Related Materials Bulk Semiconducting And Superlattice Properties , 2021 .

[95]  Gurjit Singh,et al.  Rear located Ag nanocylinders for photocurrent enhancement in thin film GaAs solar cells , 2020 .

[96]  Yachun Wang,et al.  Surface Plasmon Enhanced Light Trapping in Metal/Silicon Nanobowl Arrays for Thin Film Photovoltaics , 2017 .

[97]  R. S. Dubey,et al.  Design and analysis of GaAs thin film solar cell using an efficient light trapping bottom structure , 2016 .

[98]  Martin A. Green,et al.  Third generation photovoltaics , 2002, 2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601).

[99]  This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE JOURNAL OF PHOTOVOLTAICS 1 Gallium Arsenide Solar Cell Absorption Enhancement Using Whispering Gallery Mo , 2022 .