Hierarchical Importance Weighted Autoencoders
暂无分享,去创建一个
Alexandre Lacoste | Aaron C. Courville | Aaron Courville | Kris Sankaran | Eeshan Gunesh Dhekane | Chin-Wei Huang | Eeshan Dhekane | Alexandre Lacoste | Chin-Wei Huang | Kris Sankaran | E. Dhekane
[1] Yoshua Bengio,et al. Reweighted Wake-Sleep , 2014, ICLR.
[2] Adji B. Dieng,et al. Variational Inference via χ Upper Bound Minimization , 2017 .
[3] Ole Winther,et al. Auxiliary Deep Generative Models , 2016, ICML.
[4] Dmitry Vetrov,et al. Importance Weighted Hierarchical Variational Inference , 2019, NeurIPS.
[5] Alexandre Lacoste,et al. Neural Autoregressive Flows , 2018, ICML.
[6] Nando de Freitas,et al. Inductive Principles for Restricted Boltzmann Machine Learning , 2010, AISTATS.
[7] Shakir Mohamed,et al. Variational Inference with Normalizing Flows , 2015, ICML.
[8] Yee Whye Teh,et al. Filtering Variational Objectives , 2017, NIPS.
[9] Amos J. Storkey,et al. Towards a Neural Statistician , 2016, ICLR.
[10] Joshua B. Tenenbaum,et al. Human-level concept learning through probabilistic program induction , 2015, Science.
[11] Mingyuan Zhou,et al. Semi-Implicit Variational Inference , 2018, ICML.
[12] George Tucker,et al. Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives , 2019, ICLR.
[13] Aaron C. Courville,et al. Sequentialized Sampling Importance Resampling and Scalable IWAE , 2017 .
[14] Mike Wu,et al. Differentiable Antithetic Sampling for Variance Reduction in Stochastic Variational Inference , 2019, AISTATS.
[15] Andriy Mnih,et al. Variational Inference for Monte Carlo Objectives , 2016, ICML.
[16] David Barber,et al. An Auxiliary Variational Method , 2004, ICONIP.
[17] David Duvenaud,et al. Inference Suboptimality in Variational Autoencoders , 2018, ICML.
[18] Yee Whye Teh,et al. Tighter Variational Bounds are Not Necessarily Better , 2018, ICML.
[19] David Duvenaud,et al. Reinterpreting Importance-Weighted Autoencoders , 2017, ICLR.
[20] Sepp Hochreiter,et al. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.
[21] Dmitry P. Vetrov,et al. Doubly Semi-Implicit Variational Inference , 2018, AISTATS.
[22] Justin Domke,et al. Importance Weighting and Variational Inference , 2018, NeurIPS.
[23] Max Welling,et al. Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.
[24] Ryan P. Adams,et al. Variational Boosting: Iteratively Refining Posterior Approximations , 2016, ICML.
[25] Hugo Larochelle,et al. The Neural Autoregressive Distribution Estimator , 2011, AISTATS.
[26] Thomas Müller,et al. Neural Importance Sampling , 2018, ACM Trans. Graph..
[27] David Duvenaud,et al. Joint Importance Sampling for Variational Inference , 2018 .
[28] Daan Wierstra,et al. Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.
[29] Ruslan Salakhutdinov,et al. Importance Weighted Autoencoders , 2015, ICLR.
[30] Thomas P. Minka,et al. Divergence measures and message passing , 2005 .
[31] Dustin Tran,et al. Variational Inference via \chi Upper Bound Minimization , 2016, NIPS.
[32] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[33] Sebastian Nowozin,et al. Debiasing Evidence Approximations: On Importance-weighted Autoencoders and Jackknife Variational Inference , 2018, ICLR.
[34] Yee Whye Teh,et al. Revisiting Reweighted Wake-Sleep , 2018, ArXiv.
[35] Dustin Tran,et al. Hierarchical Variational Models , 2015, ICML.