Generalized Scaling Law for Exciton Binding Energy in Two-Dimensional Materials

Binding energy calculation in two-dimensional (2D) materials is crucial in determining their electronic and optical properties pertaining to enhanced Coulomb interactions between charge carriers due to quantum confinement and reduced dielectric screening. Based on full solutions of the Schrodinger equation in screened hydrogen model with a modified Coulomb potential ($1/r^{\beta-2}$), we present a generalized and analytical scaling law for exciton binding energy, $E_{\beta} = E_{0}\times \big (\,a\beta^{b}+c\big )\, (\mu/\epsilon^{2})$, where $\beta$ is a fractional-dimension parameter accounted for the reduced dielectric screening. The model is able to provide accurate binding energies, benchmarked with the reported Bethe-Salpeter Equation (BSE) and experimental data, for 58 mono-layer 2D and 8 bulk materials respectively through $\beta$. For a given material, $\beta$ is varied from $\beta$ = 3 for bulk 3D materials to a value lying in the range 2.55$-$2.7 for 2D mono-layer materials. With $\beta_{\text{mean}}$ = 2.625, our model improves the average relative mean square error by 3 times in comparison to existing models. The results can be used for Coulomb engineering of exciton binding energies in the optimal design of 2D materials.

[1]  C. Wu,et al.  Tungsten Diselenide Top-gate Transistors with Multilayer Antimonene Electrodes: Gate Stacks and Epitaxially Grown 2D Material Heterostructures , 2020, Scientific Reports.

[2]  Wenhan Guo,et al.  Two-Dimensional 111-Type In -Based Halide Perovskite Cs3In2X9(X=Cl,Br,I) with Optimal Band Gap for Photovoltaics and Defect-Insensitive Blue Emission , 2020 .

[3]  M. Mildner,et al.  Re-epithelialization and immune cell behaviour in an ex vivo human skin model , 2020, Scientific Reports.

[4]  Timothy C. Berkelbach,et al.  Dielectric disorder in two-dimensional materials , 2019, Nature Nanotechnology.

[5]  A. Bostwick,et al.  Rigid Band Shifts in Two-Dimensional Semiconductors through External Dielectric Screening. , 2019, Physical review letters.

[6]  A. Neto,et al.  Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor , 2019, Science Advances.

[7]  D. Englund,et al.  Dynamic exciton funneling by local strain control in a monolayer semiconductor. , 2019, Nano letters.

[8]  C. Lam,et al.  Tight-binding modeling of excitonic response in van der Waals stacked 2D semiconductors , 2019, Nanoscale Horizons.

[9]  S. Raghavan,et al.  Noninvasive Subsurface Electrical Probe for Encapsulated Layers in van der Waals Heterostructures , 2019, Physical Review Applied.

[10]  M. Trushin Tightly bound excitons in two-dimensional semiconductors with a flat valence band , 2019, Physical Review B.

[11]  S. Forrest,et al.  Energy Loss in Organic Photovoltaics: Nonfullerene Versus Fullerene Acceptors , 2019, Physical Review Applied.

[12]  S. Louie,et al.  A dielectric-defined lateral heterojunction in a monolayer semiconductor , 2019, Nature Electronics.

[13]  Ermin Malic,et al.  Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors , 2018, npj 2D Materials and Applications.

[14]  M. Knupfer,et al.  Mapping of the energetically lowest exciton in bulk1T−HfS2 , 2018, Physical Review B.

[15]  S. Schulz,et al.  Interface Roughness, Carrier Localization, and Wave Function Overlap in c -Plane (In,Ga)N/GaN Quantum Wells: Interplay of Well Width, Alloy Microstructure, Structural Inhomogeneities, and Coulomb Effects , 2018, Physical Review Applied.

[16]  Zi-Wu Wang,et al.  Correction of the exciton Bohr radius in monolayer transition metal dichalcogenides , 2018, Solid State Communications.

[17]  K. Jacobsen,et al.  The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals , 2018, 2D Materials.

[18]  Lay Kee Ang,et al.  Thickness Dependence of Space-Charge-Limited Current in Spatially Disordered Organic Semiconductors , 2018, IEEE Transactions on Electron Devices.

[19]  Takashi Taniguchi,et al.  Dissociation of two-dimensional excitons in monolayer WSe2 , 2018, Nature Communications.

[20]  E. Pop,et al.  Probing the Optical Properties and Strain-Tuning of Ultrathin Mo1- xW xTe2. , 2018, Nano letters.

[21]  M. L. Van de Put,et al.  Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk , 2018, npj 2D Materials and Applications.

[22]  E. List‐Kratochvil,et al.  Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates , 2018 .

[23]  Li Yang,et al.  Quasiparticle band gaps and optical spectra of strained monolayer transition-metal dichalcogenides , 2017 .

[24]  Wei Wei,et al.  Design of new photovoltaic systems based on two-dimensional group-IV monochalcogenides for high performance solar cells , 2017 .

[25]  Lay Kee Ang,et al.  Fractional Fowler–Nordheim Law for Field Emission From Rough Surface With Nonparabolic Energy Dispersion , 2017, IEEE Transactions on Electron Devices.

[26]  T. Low,et al.  Determination of layer-dependent exciton binding energies in few-layer black phosphorus , 2017, Science Advances.

[27]  M. Rohlfing,et al.  Interlayer excitons in a bulk van der Waals semiconductor , 2017, Nature Communications.

[28]  Q. Wang,et al.  Excitonic effects and related properties in semiconductor nanostructures: roles of size and dimensionality , 2017 .

[29]  W. Duan,et al.  Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors. , 2017, Physical review letters.

[30]  Y. Wang,et al.  Excitons in atomically thin 2D semiconductors and their applications , 2017 .

[31]  K. Thygesen Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures , 2017 .

[32]  E. Malic,et al.  Impact of strain on the optical fingerprint of monolayer transition-metal dichalcogenides , 2017, 1706.00491.

[33]  G. Kozyreff,et al.  Design of organic solar cells as a function of radiative quantum efficiency , 2017, 1705.07814.

[34]  Timothy C. Berkelbach,et al.  Coulomb engineering of the bandgap and excitons in two-dimensional materials , 2017, Nature Communications.

[35]  M. Terrones,et al.  Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide , 2017, Science Advances.

[36]  A. France-Lanord,et al.  Thermal Transport in Supported Graphene: Substrate Effects on Collective Excitations , 2017 .

[37]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[38]  Chun‐Sing Lee,et al.  On the Study of Exciton Binding Energy with Direct Charge Generation in Photovoltaic Polymers , 2016 .

[39]  D. Lei,et al.  Excitonic quantum confinement modified optical conductivity of monolayer and few-layered MoS2 , 2016 .

[40]  Lay Kee Ang,et al.  Coordinate System Invariant Formulation of Fractional‐Dimensional Child‐Langmuir Law for a Rough Cathode , 2016, Advanced Physics Research.

[41]  T. Mueller,et al.  Optoelectronic Devices Based on Atomically Thin Transition Metal Dichalcogenides , 2016 .

[42]  K. Thygesen,et al.  Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials. , 2015, Physical review letters.

[43]  Changgu Lee,et al.  Efficient Excitonic Photoluminescence in Direct and Indirect Band Gap Monolayer MoS2. , 2015, Nano letters.

[44]  Marco Grioni,et al.  Observation of Ultrafast Free Carrier Dynamics in Single Layer MoS2. , 2015, Nano letters.

[45]  Hongwei Zhu,et al.  Two-dimensional MoS2: Properties, preparation, and applications , 2015 .

[46]  Jing Kong,et al.  Dielectric screening of excitons and trions in single-layer MoS2. , 2014, Nano letters.

[47]  A. Thilagam Exciton complexes in low dimensional transition metal dichalcogenides , 2014, 1407.0902.

[48]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[49]  E. Malic,et al.  Analytical approach to excitonic properties of MoS2 , 2013, 1311.1045.

[50]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[51]  Hongxing Jiang,et al.  Two-dimensional excitons in three-dimensional hexagonal boron nitride , 2013 .

[52]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[53]  Timothy C. Berkelbach,et al.  Theory of neutral and charged excitons in monolayer transition metal dichalcogenides , 2013, 1305.4972.

[54]  Ashok Kumar,et al.  Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): Effect of quantum confinement , 2012 .

[55]  Yong-Wei Zhang,et al.  Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2 , 2012, 1211.5653.

[56]  F. Marsiglio,et al.  Solving for three-dimensional central potentials using numerical matrix methods , 2012, 1211.5236.

[57]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[58]  J. Valenta,et al.  Luminescence Spectroscopy of Semiconductors , 2012 .

[59]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[60]  Dumitru Baleanu,et al.  On fractional Schrdinger equation in a -dimensional fractional space , 2009 .

[61]  D. Baleanu,et al.  Fractional multipoles in fractional space , 2007 .

[62]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[63]  J. Graham-Pole,et al.  Physical , 1998, The Lancet.

[64]  Song,et al.  Binding energy for the intrinsic excitons in wurtzite GaN. , 1996, Physical review. B, Condensed matter.

[65]  Yang,et al.  Analytic solution of a two-dimensional hydrogen atom. I. Nonrelativistic theory. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[66]  A. Morita,et al.  Band structure and optical properties of black phosphorus , 1984 .

[67]  H. Hughes,et al.  Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 , 1979 .

[68]  Frank H. Stillinger,et al.  Axiomatic basis for spaces with noninteger dimension , 1977 .

[69]  W. Y. Liang,et al.  Excitons in 2H-WSe2 and 3R-WS2 , 1976 .

[70]  F. Raga,et al.  Excitons in molybdenum disulphide , 1975 .

[71]  G. Wannier The Structure of Electronic Excitation Levels in Insulating Crystals , 1937 .

[72]  Q. Naqvi,et al.  Electromagnetic Fields and Waves in Fractional Dimensional Space , 2012 .

[73]  Neil Genzlinger A. and Q , 2006 .

[74]  A. Anedda,et al.  Exciton spectra in MoSe2 , 1980 .

[75]  J. Frenkel On the Transformation of Light into Heat in Solids. II , 1931 .