LongSAGE profiling of nine human embryonic stem cell lines

[1]  Sarah Barber,et al.  A mouse atlas of gene expression: large-scale digital gene-expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Pyle,et al.  Defining the Role of Wnt/β‐Catenin Signaling in the Survival, Proliferation, and Self‐Renewal of Human Embryonic Stem Cells , 2005, Stem cells.

[3]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[4]  M. Gerstein,et al.  Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability , 2005, Nucleic acids research.

[5]  M. Tada,et al.  Octamer and Sox Elements Are Required for Transcriptional cis Regulation of Nanog Gene Expression , 2005, Molecular and Cellular Biology.

[6]  W. Freed,et al.  Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. , 2004, Stem cells and development.

[7]  M. Rao Conserved and divergent paths that regulate self-renewal in mouse and human embryonic stem cells. , 2004, Developmental biology.

[8]  A. Pébay,et al.  Presence of Functional Gap Junctions in Human Embryonic Stem Cells , 2004, Stem cells.

[9]  D. Besser Expression of Nodal, Lefty-A, and Lefty-B in Undifferentiated Human Embryonic Stem Cells Requires Activation of Smad2/3* , 2004, Journal of Biological Chemistry.

[10]  O. Griffith,et al.  Systematic recovery and analysis of full-ORF human cDNA clones. , 2004, Genome research.

[11]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[12]  I. Khrebtukova,et al.  MPSS profiling of human embryonic stem cells , 2004, BMC Developmental Biology.

[13]  K. Guegler,et al.  Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation , 2004, Nature Biotechnology.

[14]  J. Itskovitz‐Eldor,et al.  Differences between human and mouse embryonic stem cells. , 2004, Developmental biology.

[15]  R. Puri,et al.  Gene expression in human embryonic stem cell lines: unique molecular signature. , 2004, Blood.

[16]  Ryan T Rodriguez,et al.  Unique gene expression signatures of independently-derived human embryonic stem cell lines. , 2004, Human molecular genetics.

[17]  Hans Lehrach,et al.  A comparison of oligonucleotide and cDNA-based microarray systems. , 2004, Physiological genomics.

[18]  M. Richards,et al.  The Transcriptome Profile of Human Embryonic Stem Cells as Defined by SAGE , 2004, Stem cells.

[19]  Mark Gerstein,et al.  Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. , 2003, Genome research.

[20]  M. Suyama,et al.  A genome-wide survey of human pseudogenes. , 2003, Genome research.

[21]  F. Ayala,et al.  Pseudogenes: are they "junk" or functional DNA? , 2003, Annual review of genetics.

[22]  P. Brown,et al.  Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Yoshiyuki Sakaki,et al.  Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates , 2003, Genome Biology.

[24]  Philip M. Long,et al.  Comment on " 'Stemness': Transcriptional Profiling of Embryonic and Adult Stem Cells" and "A Stem Cell Molecular Signature" (I) , 2003, Science.

[25]  A. Brivanlou,et al.  Molecular signature of human embryonic stem cells and its comparison with the mouse. , 2003, Developmental biology.

[26]  P. Sharp,et al.  Embryonic stem cell-specific MicroRNAs. , 2003, Developmental cell.

[27]  M. Murakami,et al.  The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells , 2003, Cell.

[28]  J. Nichols,et al.  Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells , 2003, Cell.

[29]  D. Page,et al.  Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei , 2003, Development.

[30]  J. Thomson,et al.  BMP4 initiates human embryonic stem cell differentiation to trophoblast , 2002, Nature Biotechnology.

[31]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[32]  John T. Dimos,et al.  A Stem Cell Molecular Signature , 2002, Science.

[33]  D. Melton,et al.  "Stemness": Transcriptional Profiling of Embryonic and Adult Stem Cells , 2002, Science.

[34]  J. Rowley,et al.  Identifying novel transcripts and novel genes in the human genome by using novel SAGE tags , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Tor-Kristian Jenssen,et al.  Analysis of repeatability in spotted cDNA microarrays. , 2002, Nucleic acids research.

[36]  J. Thomson,et al.  Preimplantation Human Embryos and Embryonic Stem Cells Show Comparable Expression of Stage‐Specific Embryonic Antigens , 2002, Stem cells.

[37]  Zuzana Dobbie,et al.  Processing of gene expression data generated by quantitative real-time RT-PCR. , 2002, BioTechniques.

[38]  A. Sparks,et al.  Using the transcriptome to annotate the genome , 2002, Nature Biotechnology.

[39]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[40]  Lucila Ohno-Machado,et al.  Analysis of matched mRNA measurements from two different microarray technologies , 2002, Bioinform..

[41]  P. Gruss,et al.  Expression of Foxb1 Reveals Two Strategies for the Formation of Nuclei in the Developing Ventral Diencephalon , 2000, Developmental Neuroscience.

[42]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[43]  N. Goldman,et al.  Codon-substitution models for heterogeneous selection pressure at amino acid sites. , 2000, Genetics.

[44]  P Gruss,et al.  Winged helix transcription factor Foxb1 is essential for access of mammillothalamic axons to the thalamus. , 2000, Development.

[45]  J. Thomson,et al.  Human embryonic stem cell and embryonic germ cell lines. , 2000, Trends in biotechnology.

[46]  R D Klausner,et al.  The mammalian gene collection. , 1999, Science.

[47]  M. G. Koerkamp,et al.  Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. , 1999, Molecular biology of the cell.

[48]  J. Thomson,et al.  Embryonic stem cell lines derived from human blastocysts. , 1998, Science.

[49]  H. Schöler,et al.  Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4 , 1998, Cell.

[50]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[51]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[52]  M. Capecchi,et al.  Inactivation of the FGF-4 gene in embryonic stem cells alters the growth and/or the survival of their early differentiated progeny. , 1997, Developmental biology.

[53]  Stefania Staibano,et al.  Expression of teratocarcinoma-derived growth factor-1 (TDGF-1) in testis germ cell tumors and its effects on growth and differentiation of embryonal carcinoma cell line NTERA2/D1 , 1997, Oncogene.

[54]  B. Hogan,et al.  The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex. , 1997, Development.

[55]  M. Klemsz,et al.  Genesis, a Winged Helix Transcriptional Repressor with Expression Restricted to Embryonic Stem Cells* , 1996, The Journal of Biological Chemistry.

[56]  V. Tarabykin,et al.  Full-length cDNA cloning and determination of mRNA 5' and 3' ends by amplification of adaptor-ligated cDNA. , 1996, BioTechniques.

[57]  N. Corbi,et al.  Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. , 1995, Genes & development.

[58]  H. Schöler,et al.  Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. , 1989, The EMBO journal.

[59]  M. Frohman,et al.  Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Kaufman,et al.  Establishment in culture of pluripotential cells from mouse embryos , 1981, Nature.

[61]  P. Greengard,et al.  Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor , 2004, Nature Medicine.

[62]  R. Lovell-Badge,et al.  Multipotent cell lineages in early mouse development depend on SOX2 function. , 2003, Genes & development.

[63]  Donna R. Maglott,et al.  RefSeq and LocusLink: NCBI gene-centered resources , 2001, Nucleic Acids Res..

[64]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[65]  A. Mighell,et al.  Vertebrate pseudogenes , 2000, FEBS letters.

[66]  M. Chamberlin,et al.  Basic mechanisms of transcript elongation and its regulation. , 1997, Annual review of biochemistry.

[67]  K. Pearson Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and Panmixia , 1896 .