Layer Potential Techniques in Spectral Analysis. Part II: Sensitivity Analysis of Spectral Properties of High Contrast Band-Gap Materials
暂无分享,去创建一个
HYEONBAE KANG | HABIB AMMARI | SOFIANE SOUSSI | HABIB ZRIBI | H. Ammari | Hyeonbae Kang | Habib Zribi | S. Soussi
[1] Chan,et al. Existence of a photonic gap in periodic dielectric structures. , 1990, Physical review letters.
[2] Alexander Figotin,et al. Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model , 1996, SIAM J. Appl. Math..
[3] Brian Davies,et al. Partial Differential Equations II , 2002 .
[4] Steven J. Cox,et al. Band Structure Optimization of Two-Dimensional Photonic Crystals in H-Polarization , 2000 .
[5] C. M. Linton,et al. The Green's Function for the Two-Dimensional Helmholtz Equation in Periodic Domains , 1998 .
[6] R. Hempel,et al. Spectral properties of periodic media in the large coupling limit , 1999 .
[7] L. Friedlander. ON THE DENSITY OF STATES OF PERIODIC MEDIA IN THE LARGE COUPLING LIMIT , 2002 .
[8] D. Dobson. An Efficient Method for Band Structure Calculations in 2D Photonic Crystals , 1999 .
[9] L Greengard,et al. Sensitivity analysis of photonic crystal fiber. , 2004, Optics express.
[10] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[11] D. Larkman,et al. Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).
[12] Stephanos Venakides,et al. Boundary Integral Calculations of Two-Dimensional Electromagnetic Scattering by Photonic Crystal Fabry-Perot Structures , 2000, SIAM J. Appl. Math..
[13] Takashi Suzuki. The Green’s Function , 2005 .
[14] J. Selden. Periodic Operators in High-Contrast Media and the Integrated Density of States Function , 2005 .
[15] L Greengard,et al. Fast, accurate integral equation methods for the analysis of photonic crystal fibers I: Theory. , 2004, Optics express.
[16] Kazuaki Sakoda,et al. Optical Properties of Photonic Crystals , 2001 .
[17] Jingfang Huang,et al. Lattice sums and the two-dimensional, periodic Green's function for the Helmholtz equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[18] Habib Ammari,et al. Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities , 2004 .
[19] Nicorovici,et al. Photonic band gaps for arrays of perfectly conducting cylinders. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[20] Eli Yablonovitch,et al. Inhibited spontaneous emission in solid-state electronics , 1987 .
[21] Habib Ammari,et al. Boundary layer techniques for deriving the effective properties of composite materials , 2005 .
[22] I. Herbst,et al. Strong magnetic fields, Dirichlet boundaries, and spectral gaps , 1995 .
[23] P. Kuchment. The mathematics of photonic crystals , 2001 .
[24] Y. Meyer,et al. L'integrale de Cauchy Definit un Operateur Borne sur L 2 Pour Les Courbes Lipschitziennes , 1982 .
[25] Alexander Figotin,et al. Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals , 1996, SIAM J. Appl. Math..
[26] J. Pasciak,et al. An efficient method for band structure calculations in 3D photonic crystals , 1999 .
[27] Alexander Figotin,et al. Spectral Properties of Classical Waves in High-Contrast Periodic Media , 1998, SIAM J. Appl. Math..
[28] H. Ammari,et al. Splitting of resonant and scattering frequencies under shape deformation , 2004 .
[29] H A Haus,et al. Photonic bands: Convergence problems with the plane-wave method. , 1992, Physical review. B, Condensed matter.
[30] I. Gohberg,et al. AN OPERATOR GENERALIZATION OF THE LOGARITHMIC RESIDUE THEOREM AND THE THEOREM OF ROUCHÉ , 1971 .
[31] Sofiane Soussi,et al. Modeling photonic crystal fibers , 2006, Adv. Appl. Math..