Layer Potential Techniques in Spectral Analysis. Part II: Sensitivity Analysis of Spectral Properties of High Contrast Band-Gap Materials

We investigate the band‐gap structure of the frequency spectrum for waves in a high‐contrast, two‐component periodic medium. We consider two‐dimensional photonic crystals consisting of a background medium which is perforated by an array of holes periodic along each of the two orthogonal coordinate axes. We perform a high‐order sensitivity analysis with respect to the index ratio and small perturbations in the geometry of the holes. Our method, which is based on a boundary integral perturbation theory, gives a new tool for the optimal design problem in photonic crystals.

[1]  Chan,et al.  Existence of a photonic gap in periodic dielectric structures. , 1990, Physical review letters.

[2]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model , 1996, SIAM J. Appl. Math..

[3]  Brian Davies,et al.  Partial Differential Equations II , 2002 .

[4]  Steven J. Cox,et al.  Band Structure Optimization of Two-Dimensional Photonic Crystals in H-Polarization , 2000 .

[5]  C. M. Linton,et al.  The Green's Function for the Two-Dimensional Helmholtz Equation in Periodic Domains , 1998 .

[6]  R. Hempel,et al.  Spectral properties of periodic media in the large coupling limit , 1999 .

[7]  L. Friedlander ON THE DENSITY OF STATES OF PERIODIC MEDIA IN THE LARGE COUPLING LIMIT , 2002 .

[8]  D. Dobson An Efficient Method for Band Structure Calculations in 2D Photonic Crystals , 1999 .

[9]  L Greengard,et al.  Sensitivity analysis of photonic crystal fiber. , 2004, Optics express.

[10]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[11]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[12]  Stephanos Venakides,et al.  Boundary Integral Calculations of Two-Dimensional Electromagnetic Scattering by Photonic Crystal Fabry-Perot Structures , 2000, SIAM J. Appl. Math..

[13]  Takashi Suzuki The Green’s Function , 2005 .

[14]  J. Selden Periodic Operators in High-Contrast Media and the Integrated Density of States Function , 2005 .

[15]  L Greengard,et al.  Fast, accurate integral equation methods for the analysis of photonic crystal fibers I: Theory. , 2004, Optics express.

[16]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[17]  Jingfang Huang,et al.  Lattice sums and the two-dimensional, periodic Green's function for the Helmholtz equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Habib Ammari,et al.  Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities , 2004 .

[19]  Nicorovici,et al.  Photonic band gaps for arrays of perfectly conducting cylinders. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Eli Yablonovitch,et al.  Inhibited spontaneous emission in solid-state electronics , 1987 .

[21]  Habib Ammari,et al.  Boundary layer techniques for deriving the effective properties of composite materials , 2005 .

[22]  I. Herbst,et al.  Strong magnetic fields, Dirichlet boundaries, and spectral gaps , 1995 .

[23]  P. Kuchment The mathematics of photonic crystals , 2001 .

[24]  Y. Meyer,et al.  L'integrale de Cauchy Definit un Operateur Borne sur L 2 Pour Les Courbes Lipschitziennes , 1982 .

[25]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals , 1996, SIAM J. Appl. Math..

[26]  J. Pasciak,et al.  An efficient method for band structure calculations in 3D photonic crystals , 1999 .

[27]  Alexander Figotin,et al.  Spectral Properties of Classical Waves in High-Contrast Periodic Media , 1998, SIAM J. Appl. Math..

[28]  H. Ammari,et al.  Splitting of resonant and scattering frequencies under shape deformation , 2004 .

[29]  H A Haus,et al.  Photonic bands: Convergence problems with the plane-wave method. , 1992, Physical review. B, Condensed matter.

[30]  I. Gohberg,et al.  AN OPERATOR GENERALIZATION OF THE LOGARITHMIC RESIDUE THEOREM AND THE THEOREM OF ROUCHÉ , 1971 .

[31]  Sofiane Soussi,et al.  Modeling photonic crystal fibers , 2006, Adv. Appl. Math..