Changing Views: Persuasion Modeling and Argument Extraction from Online Discussions

Persuasion and argumentation are possibly among the most complex examples of the interplay between multiple human subjects. With the advent of the Internet, online forums provide wide platforms for people to share their opinions and reasonings around various diverse topics. In this work, we attempt to model persuasive interaction between users on Reddit, a popular online discussion forum. We propose a deep LSTM model to classify whether a conversation leads to a successful persuasion or not, and use this model to predict whether a certain chain of arguments can lead to persuasion. While learning persuasion dynamics, our model tends to identify argument facets implicitly, using an attention mechanism. We also propose a semi-supervised approach to extract argumentative components from discussion threads. Both these models provide useful insight into how people engage in argumentation on online discussion forums.

[1]  S. Toulmin The uses of argument , 1960 .

[2]  R. Gunning The Fog Index After Twenty Years , 1969 .

[3]  Marie-Francine Moens,et al.  Argumentation mining: the detection, classification and structure of arguments in text , 2009, ICAIL.

[4]  Avon Crismore,et al.  Metadiscourse in Persuasive Writing , 1993 .

[5]  Tudor Groza,et al.  A review of argumentation for the Social Semantic Web , 2013, Semantic Web.

[6]  Noam Slonim,et al.  A Benchmark Dataset for Automatic Detection of Claims and Evidence in the Context of Controversial Topics , 2014, ArgMining@ACL.

[7]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[8]  B. J. Fogg Mass Interpersonal Persuasion: An Early View of a New Phenomenon , 2008, PERSUASIVE.

[9]  Jacob Andreas,et al.  Detecting Influencers in Written Online Conversations , 2012 .

[10]  Paolo Torroni,et al.  Argumentation Mining , 2016, ACM Trans. Internet Techn..

[11]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[12]  Aaron E. Rosenberg,et al.  Performance tradeoffs in dynamic time warping algorithms for isolated word recognition , 1980 .

[13]  Owen Rambow,et al.  Identifying Justifications in Written Dialogs by Classifying Text as Argumentative , 2011, Int. J. Semantic Comput..

[14]  Nina Wacholder,et al.  Analyzing Argumentative Discourse Units in Online Interactions , 2014, ArgMining@ACL.

[15]  Efstathios Stamatatos,et al.  Syntactic N-grams as machine learning features for natural language processing , 2014, Expert Syst. Appl..

[16]  B. J. Fogg,et al.  Six Patterns for Persuasion in Online Social Networks , 2008, PERSUASIVE.

[17]  Marie-Francine Moens,et al.  Automatic detection of arguments in legal texts , 2007, ICAIL.

[18]  T. Holtgraves,et al.  Linguistic Power and Persuasion , 1999 .

[19]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[20]  Vangelis Karkaletsis,et al.  Argument Extraction from News , 2015, ArgMining@HLT-NAACL.

[21]  Grigori Sidorov,et al.  Should Syntactic N-grams Contain Names of Syntactic Relations? , 2014, Int. J. Comput. Linguistics Appl..

[22]  R. Cialdini,et al.  Online persuasion: An examination of gender differences in computer-mediated interpersonal influence. , 2002 .

[23]  Arthur M. Farley,et al.  Burden of proof in legal argumentation , 1995, ICAIL '95.

[24]  Vangelis Karkaletsis,et al.  Argument Extraction from News, Blogs, and Social Media , 2014, SETN.

[25]  Robert E. Kalaba,et al.  On adaptive control processes , 1959 .

[26]  Daniele Quercia,et al.  In the Mood for Being Influential on Twitter , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[27]  Fadi Biadsy,et al.  Contextual Phrase-Level Polarity Analysis Using Lexical Affect Scoring and Syntactic N-Grams , 2009, EACL.

[28]  Chris Reed,et al.  Mining Arguments From 19th Century Philosophical Texts Using Topic Based Modelling , 2014, ArgMining@ACL.

[29]  Iryna Gurevych,et al.  Annotating Argument Components and Relations in Persuasive Essays , 2014, COLING.

[30]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[31]  Iryna Gurevych,et al.  Identifying Argumentative Discourse Structures in Persuasive Essays , 2014, EMNLP.

[32]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning and Logic Programming , 1993, IJCAI.

[33]  Iryna Gurevych,et al.  What makes a convincing argument? Empirical analysis and detecting attributes of convincingness in Web argumentation , 2016, EMNLP.

[34]  Iryna Gurevych,et al.  Argumentation Mining in User-Generated Web Discourse , 2016, CL.

[35]  Yi Li,et al.  Is This Post Persuasive? Ranking Argumentative Comments in Online Forum , 2016, ACL.

[36]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[37]  Cristian Danescu-Niculescu-Mizil,et al.  Winning Arguments: Interaction Dynamics and Persuasion Strategies in Good-faith Online Discussions , 2016, WWW.

[38]  Matt J. Kusner,et al.  From Word Embeddings To Document Distances , 2015, ICML.